|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "task = \"lenofstay\"\n", |
| 10 | + "\n", |
| 11 | + "ratios = [\n", |
| 12 | + " 0.1,\n", |
| 13 | + " 0.2,\n", |
| 14 | + " 0.3,\n", |
| 15 | + " 0.4,\n", |
| 16 | + " 0.5,\n", |
| 17 | + " 0.7,\n", |
| 18 | + " 0.9,\n", |
| 19 | + "]" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 3, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "from pyhealth.datasets import split_by_patient, get_dataloader\n", |
| 29 | + "import pickle\n", |
| 30 | + "\n", |
| 31 | + "with open(f'/data/pj20/exp_data/ccscm_ccsproc/sample_dataset_mimic3_{task}_th015.pkl', 'rb') as f:\n", |
| 32 | + " sample_dataset = pickle.load(f)\n", |
| 33 | + "\n", |
| 34 | + "train_dataset, _, test_dataset = split_by_patient(sample_dataset, [0.8, 0.1, 0.1], train_ratio=1.0, seed=528)\n", |
| 35 | + "train_loader = get_dataloader(train_dataset, batch_size=64, shuffle=True)\n", |
| 36 | + "test_loader = get_dataloader(test_dataset, batch_size=64, shuffle=False)" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 4, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "from pyhealth.trainer import Trainer\n", |
| 46 | + "import torch\n", |
| 47 | + "from pyhealth.models import Transformer, RETAIN, SafeDrug, MICRON, CNN, RNN, GAMENet\n", |
| 48 | + "from collections import defaultdict\n", |
| 49 | + "\n", |
| 50 | + "\n", |
| 51 | + "for ratio in ratios:\n", |
| 52 | + " with open(f'/data/pj20/exp_data/ccscm_ccsproc_atc3/val_dataset_mimic3_{task}_th015_{1-ratio}.pkl', 'rb') as f:\n", |
| 53 | + " val_dataset = pickle.load(f)\n", |
| 54 | + " val_loader = get_dataloader(val_dataset, batch_size=64, shuffle=False)\n" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 7, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [ |
| 62 | + { |
| 63 | + "name": "stderr", |
| 64 | + "output_type": "stream", |
| 65 | + "text": [ |
| 66 | + "GAMENet(\n", |
| 67 | + " (embeddings): ModuleDict(\n", |
| 68 | + " (conditions): Embedding(283, 128, padding_idx=0)\n", |
| 69 | + " (procedures): Embedding(223, 128, padding_idx=0)\n", |
| 70 | + " )\n", |
| 71 | + " (cond_rnn): GRU(128, 128, batch_first=True)\n", |
| 72 | + " (proc_rnn): GRU(128, 128, batch_first=True)\n", |
| 73 | + " (query): Sequential(\n", |
| 74 | + " (0): ReLU()\n", |
| 75 | + " (1): Linear(in_features=256, out_features=128, bias=True)\n", |
| 76 | + " )\n", |
| 77 | + " (gamenet): GAMENetLayer(\n", |
| 78 | + " (ehr_gcn): GCN(\n", |
| 79 | + " (gcn1): GCNLayer()\n", |
| 80 | + " (dropout_layer): Dropout(p=0.5, inplace=False)\n", |
| 81 | + " (gcn2): GCNLayer()\n", |
| 82 | + " )\n", |
| 83 | + " (ddi_gcn): GCN(\n", |
| 84 | + " (gcn1): GCNLayer()\n", |
| 85 | + " (dropout_layer): Dropout(p=0.5, inplace=False)\n", |
| 86 | + " (gcn2): GCNLayer()\n", |
| 87 | + " )\n", |
| 88 | + " (fc): Linear(in_features=384, out_features=197, bias=True)\n", |
| 89 | + " (bce_loss_fn): BCEWithLogitsLoss()\n", |
| 90 | + " )\n", |
| 91 | + ")\n", |
| 92 | + "Metrics: ['pr_auc_samples', 'roc_auc_samples', 'f1_samples', 'jaccard_samples']\n", |
| 93 | + "Device: cuda:1\n", |
| 94 | + "\n", |
| 95 | + "Training:\n", |
| 96 | + "Batch size: 64\n", |
| 97 | + "Optimizer: <class 'torch.optim.adam.Adam'>\n", |
| 98 | + "Optimizer params: {'lr': 0.001}\n", |
| 99 | + "Weight decay: 0.0\n", |
| 100 | + "Max grad norm: None\n", |
| 101 | + "Val dataloader: <torch.utils.data.dataloader.DataLoader object at 0x7fb588a29b50>\n", |
| 102 | + "Monitor: pr_auc_samples\n", |
| 103 | + "Monitor criterion: max\n", |
| 104 | + "Epochs: 5\n", |
| 105 | + "\n", |
| 106 | + "Epoch 0 / 5: 100%|██████████| 1/1 [00:00<00:00, 3.45it/s]\n", |
| 107 | + "--- Train epoch-0, step-1 ---\n", |
| 108 | + "loss: 0.6954\n", |
| 109 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 121.22it/s]\n", |
| 110 | + "--- Eval epoch-0, step-1 ---\n", |
| 111 | + "pr_auc_samples: 0.2212\n", |
| 112 | + "roc_auc_samples: 0.5977\n", |
| 113 | + "f1_samples: 0.2464\n", |
| 114 | + "jaccard_samples: 0.1441\n", |
| 115 | + "loss: 0.6834\n", |
| 116 | + "New best pr_auc_samples score (0.2212) at epoch-0, step-1\n", |
| 117 | + "\n", |
| 118 | + "Epoch 1 / 5: 100%|██████████| 1/1 [00:00<00:00, 90.69it/s]\n", |
| 119 | + "--- Train epoch-1, step-2 ---\n", |
| 120 | + "loss: 0.6839\n", |
| 121 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 155.81it/s]\n", |
| 122 | + "--- Eval epoch-1, step-2 ---\n", |
| 123 | + "pr_auc_samples: 0.3191\n", |
| 124 | + "roc_auc_samples: 0.6721\n", |
| 125 | + "f1_samples: 0.3108\n", |
| 126 | + "jaccard_samples: 0.1885\n", |
| 127 | + "loss: 0.6718\n", |
| 128 | + "New best pr_auc_samples score (0.3191) at epoch-1, step-2\n", |
| 129 | + "\n", |
| 130 | + "Epoch 2 / 5: 100%|██████████| 1/1 [00:00<00:00, 86.69it/s]\n", |
| 131 | + "--- Train epoch-2, step-3 ---\n", |
| 132 | + "loss: 0.6737\n", |
| 133 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 153.50it/s]\n", |
| 134 | + "--- Eval epoch-2, step-3 ---\n", |
| 135 | + "pr_auc_samples: 0.4212\n", |
| 136 | + "roc_auc_samples: 0.7142\n", |
| 137 | + "f1_samples: 0.3806\n", |
| 138 | + "jaccard_samples: 0.2418\n", |
| 139 | + "loss: 0.6606\n", |
| 140 | + "New best pr_auc_samples score (0.4212) at epoch-2, step-3\n", |
| 141 | + "\n", |
| 142 | + "Epoch 3 / 5: 100%|██████████| 1/1 [00:00<00:00, 85.59it/s]\n", |
| 143 | + "--- Train epoch-3, step-4 ---\n", |
| 144 | + "loss: 0.6613\n", |
| 145 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 149.41it/s]\n", |
| 146 | + "--- Eval epoch-3, step-4 ---\n", |
| 147 | + "pr_auc_samples: 0.4770\n", |
| 148 | + "roc_auc_samples: 0.7327\n", |
| 149 | + "f1_samples: 0.4432\n", |
| 150 | + "jaccard_samples: 0.2942\n", |
| 151 | + "loss: 0.6491\n", |
| 152 | + "New best pr_auc_samples score (0.4770) at epoch-3, step-4\n", |
| 153 | + "\n", |
| 154 | + "Epoch 4 / 5: 100%|██████████| 1/1 [00:00<00:00, 84.91it/s]\n", |
| 155 | + "--- Train epoch-4, step-5 ---\n", |
| 156 | + "loss: 0.6454\n", |
| 157 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 150.65it/s]\n", |
| 158 | + "--- Eval epoch-4, step-5 ---\n", |
| 159 | + "pr_auc_samples: 0.4981\n", |
| 160 | + "roc_auc_samples: 0.7424\n", |
| 161 | + "f1_samples: 0.4729\n", |
| 162 | + "jaccard_samples: 0.3208\n", |
| 163 | + "loss: 0.6370\n", |
| 164 | + "New best pr_auc_samples score (0.4981) at epoch-4, step-5\n", |
| 165 | + "Loaded best model\n", |
| 166 | + "Evaluation: 100%|██████████| 68/68 [00:00<00:00, 152.59it/s]\n" |
| 167 | + ] |
| 168 | + } |
| 169 | + ], |
| 170 | + "source": [ |
| 171 | + "from pyhealth.trainer import Trainer\n", |
| 172 | + "import torch\n", |
| 173 | + "from pyhealth.models import Transformer, RETAIN, SafeDrug, MICRON, CNN, RNN, GAMENet\n", |
| 174 | + "from collections import defaultdict\n", |
| 175 | + "\n", |
| 176 | + "results = defaultdict(list)\n", |
| 177 | + "\n", |
| 178 | + "for i in range(1):\n", |
| 179 | + " for model_ in [\n", |
| 180 | + " # Transformer, \n", |
| 181 | + " # RETAIN,\n", |
| 182 | + " # SafeDrug,\n", |
| 183 | + " # MICRON,\n", |
| 184 | + " GAMENet\n", |
| 185 | + " ]:\n", |
| 186 | + " try:\n", |
| 187 | + " model = model_(\n", |
| 188 | + " dataset=sample_dataset,\n", |
| 189 | + " feature_keys=[\"conditions\", \"procedures\"],\n", |
| 190 | + " label_key=\"drugs\",\n", |
| 191 | + " mode=\"multilabel\",\n", |
| 192 | + " )\n", |
| 193 | + " except:\n", |
| 194 | + " model = model_(dataset=sample_dataset)\n", |
| 195 | + "\n", |
| 196 | + " device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')\n", |
| 197 | + "\n", |
| 198 | + " ## binary\n", |
| 199 | + " # trainer = Trainer(model=model, device=device, metrics=[\"pr_auc\", \"roc_auc\", \"accuracy\", \"f1\", \"jaccard\"])\n", |
| 200 | + " # trainer.train(\n", |
| 201 | + " # train_dataloader=train_loader,\n", |
| 202 | + " # val_dataloader=val_loader,\n", |
| 203 | + " # epochs=5,\n", |
| 204 | + " # monitor=\"accuracy\",\n", |
| 205 | + " # )\n", |
| 206 | + "\n", |
| 207 | + " ## multi-label\n", |
| 208 | + " trainer = Trainer(model=model, device=device, metrics=[\"pr_auc_samples\", \"roc_auc_samples\", \"f1_samples\", \"jaccard_samples\"])\n", |
| 209 | + " trainer.train(\n", |
| 210 | + " train_dataloader=train_loader,\n", |
| 211 | + " val_dataloader=val_loader,\n", |
| 212 | + " epochs=5,\n", |
| 213 | + " monitor=\"pr_auc_samples\",\n", |
| 214 | + " )\n", |
| 215 | + "\n", |
| 216 | + " ## multi-class\n", |
| 217 | + " # trainer = Trainer(model=model, device=device, metrics=[\"roc_auc_weighted_ovr\", \"cohen_kappa\", \"accuracy\", \"f1_weighted\"])\n", |
| 218 | + " # trainer.train(\n", |
| 219 | + " # train_dataloader=train_loader,\n", |
| 220 | + " # val_dataloader=val_loader,\n", |
| 221 | + " # epochs=5,\n", |
| 222 | + " # monitor=\"roc_auc_weighted_ovr\",\n", |
| 223 | + " # )\n", |
| 224 | + "\n", |
| 225 | + " results[model_.__name__].append(trainer.evaluate(val_loader))" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": 12, |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "avg_results = defaultdict(dict)\n", |
| 235 | + "\n", |
| 236 | + "for k, v in results.items():\n", |
| 237 | + " for k_, v_ in v[0].items():\n", |
| 238 | + " avg_results[k][k_] = sum([vv[k_] for vv in v]) / len(v)" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 13, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "import numpy as np\n", |
| 248 | + "# calculate standard deviation\n", |
| 249 | + "variation_results = defaultdict(dict)\n", |
| 250 | + "\n", |
| 251 | + "for k, v in results.items():\n", |
| 252 | + " for k_, v_ in v[0].items():\n", |
| 253 | + " variation_results[k][k_] = np.std([vv[k_] for vv in v])" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "code", |
| 258 | + "execution_count": 14, |
| 259 | + "metadata": {}, |
| 260 | + "outputs": [ |
| 261 | + { |
| 262 | + "data": { |
| 263 | + "text/plain": [ |
| 264 | + "defaultdict(dict,\n", |
| 265 | + " {'GAMENet': {'pr_auc_samples': 0.4980838198236469,\n", |
| 266 | + " 'roc_auc_samples': 0.7424090396318291,\n", |
| 267 | + " 'f1_samples': 0.4728838360695048,\n", |
| 268 | + " 'jaccard_samples': 0.32078592771277264,\n", |
| 269 | + " 'loss': 0.6370396333582261}})" |
| 270 | + ] |
| 271 | + }, |
| 272 | + "execution_count": 14, |
| 273 | + "metadata": {}, |
| 274 | + "output_type": "execute_result" |
| 275 | + } |
| 276 | + ], |
| 277 | + "source": [ |
| 278 | + "avg_results" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "code", |
| 283 | + "execution_count": 11, |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "data": { |
| 288 | + "text/plain": [ |
| 289 | + "defaultdict(dict,\n", |
| 290 | + " {'GAMENet': {'pr_auc_samples': 0.0,\n", |
| 291 | + " 'roc_auc_samples': 0.0,\n", |
| 292 | + " 'f1_samples': 0.0,\n", |
| 293 | + " 'jaccard_samples': 0.0,\n", |
| 294 | + " 'loss': 0.0}})" |
| 295 | + ] |
| 296 | + }, |
| 297 | + "execution_count": 11, |
| 298 | + "metadata": {}, |
| 299 | + "output_type": "execute_result" |
| 300 | + } |
| 301 | + ], |
| 302 | + "source": [ |
| 303 | + "variation_results" |
| 304 | + ] |
| 305 | + }, |
| 306 | + { |
| 307 | + "cell_type": "code", |
| 308 | + "execution_count": null, |
| 309 | + "metadata": {}, |
| 310 | + "outputs": [], |
| 311 | + "source": [] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "metadata": {}, |
| 317 | + "outputs": [], |
| 318 | + "source": [] |
| 319 | + } |
| 320 | + ], |
| 321 | + "metadata": { |
| 322 | + "kernelspec": { |
| 323 | + "display_name": "Python 3.8.13 ('kgc')", |
| 324 | + "language": "python", |
| 325 | + "name": "python3" |
| 326 | + }, |
| 327 | + "language_info": { |
| 328 | + "codemirror_mode": { |
| 329 | + "name": "ipython", |
| 330 | + "version": 3 |
| 331 | + }, |
| 332 | + "file_extension": ".py", |
| 333 | + "mimetype": "text/x-python", |
| 334 | + "name": "python", |
| 335 | + "nbconvert_exporter": "python", |
| 336 | + "pygments_lexer": "ipython3", |
| 337 | + "version": "3.8.13" |
| 338 | + }, |
| 339 | + "orig_nbformat": 4, |
| 340 | + "vscode": { |
| 341 | + "interpreter": { |
| 342 | + "hash": "3d0509d9aa81f2882b18eeb72d4d23c32cae9029e9b99f63cde94ba86c35ac78" |
| 343 | + } |
| 344 | + } |
| 345 | + }, |
| 346 | + "nbformat": 4, |
| 347 | + "nbformat_minor": 2 |
| 348 | +} |
0 commit comments