This repository was archived by the owner on Oct 31, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTANchap2ex2.py
54 lines (42 loc) · 1.5 KB
/
STANchap2ex2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
import numpy as np, arviz as az, matplotlib.pyplot as plt
from cmdstanpy import CmdStanModel
rng = np.random.default_rng(seed = 123) # newly introduced type of random generator
pA, N = .05, 1500
occurrences = rng.binomial(N, pA)
mdl_data = {"N": N, "occur": occurrences}
modelfile = "ABtesting.stan"
with open(modelfile, "w") as file: file.write("""
data {
int<lower=0> N;
int<lower=0, upper=N> occur;
}
parameters { // discrete parameters impossible
real<lower=0, upper=1> probA;
}
model {
occur ~ binomial(N, probA);
}
""")
sm = CmdStanModel(stan_file = modelfile)
# maximum likelihood estimation
optim = sm.optimize(data = mdl_data).optimized_params_pd
optim[optim.columns[~optim.columns.str.startswith("lp")]]
# variational inference
vb = sm.variational(data = mdl_data)
vb.variational_sample.columns = vb.variational_params_dict.keys()
vb_name = vb.variational_params_pd.columns[~vb.variational_params_pd.columns.str.startswith(("lp", "log_"))]
vb.variational_params_pd[vb_name]
vb.variational_sample[vb_name]
# Markov chain Monte Carlo
fit = sm.sample(
data = mdl_data, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit.draws().shape # iterations, chains, parameters
fit.summary().loc[vb_name] # pandas DataFrame
print(fit.diagnose())
posterior = fit.stan_variables()
az_trace = az.from_cmdstanpy(fit)
az.summary(az_trace).loc[vb_name] # pandas DataFrame
az.plot_trace(az_trace)