forked from saber5433/ToneNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathToneNet.py
175 lines (139 loc) · 4.62 KB
/
ToneNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from PIL import Image
from utils import preprocess_input
import numpy as np
from sklearn import metrics
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Conv2D, Activation, MaxPool2D,Flatten, Dense
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD
from keras.models import load_model
def get_data(data_path_file):
with open(data_path_file,'r',encoding='utf-8') as f:
data = f.readlines()
content=[]
label=[]
for d in data:
tmp = d.split('\t')
im = Image.open(tmp[0])
x = preprocess_input(np.array(im,dtype='float32'))
content.append(x)
label.append(int(tmp[-1].strip().strip('\n'))-1)
return np.array(content), label
def ToneNet(train_data,train_label,test_data,test_label, wigth,heigth,channels,lr,activation,epochs,batch_size):
train_label = np_utils.to_categorical(train_label,num_classes = 4)
test_label = np_utils.to_categorical(test_label,num_classes = 4)
model = Sequential()
model.add(Conv2D(
filters=64,
kernel_size=(5,5),
strides=(3,3),
padding='same',
input_shape=(wigth, heigth, channels),
))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(MaxPool2D(
pool_size=(3,3),
strides=(3,3),
padding='same',
))
model.add(Conv2D(
filters=128,
kernel_size=(3,3),
strides=(1,1),
padding='same'
))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(MaxPool2D(
pool_size=(2,2),
strides=(2,2),
padding='same',
))
model.add(Conv2D(
filters=256,
kernel_size=(3,3),
strides=(1,1),
padding='same'
))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(MaxPool2D(
pool_size=(2,2),
strides=(2,2),
padding='same',
))
model.add(Conv2D(
filters=256,
kernel_size=(3,3),
strides=(1,1),
padding='same'
))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(MaxPool2D(
pool_size=(2,2),
strides=(2,2),
padding='same',
))
model.add(Conv2D(
filters=512,
kernel_size=(3,3),
strides=(1,1),
padding='same'
))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(MaxPool2D(
pool_size=(2,2),
strides=(2,2),
padding='same',
))
model.add(Flatten())
model.add(Dense(1024))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(Dense(1024))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(Dense(4))
model.add(Activation('softmax'))
sgd = SGD(lr=lr, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,
loss='categorical_crossentropy',
metrics=['accuracy'])
print("training ==========================")
checkpointer = ModelCheckpoint(filepath="Model/ToneNet.hdf5", verbose=1, save_best_only=True)
model.fit(train_data, train_label, validation_split=0.1,shuffle=True, \
epochs=epochs,verbose=1,batch_size=batch_size,callbacks=[checkpointer])
print("Testing ===========================")
loss, accuracy = model.evaluate(test_data, test_label)
print("loss:", loss)
print("Test:", accuracy)
def predict(model, file_path):
model = load_model(model)
test_data,test_label=get_data(file_path)
output_o = model.predict(test_data, batch_size=len(test_data))
output = np.argmax(output_o,axis=1)
confusion_matrix = metrics.confusion_matrix(test_label, output)
accuracy = metrics.accuracy_score(test_label, output)
precision = metrics.precision_score(test_label, output,average='macro')
recall = metrics.recall_score(test_label, output,average='macro')
f1_score = 2*recall*precision / (recall+precision)
print(confusion_matrix)
print('accuracy:',accuracy,'precision:',precision,'recall:',recall,'f1_score:',f1_score)
return output_o
def main():
train_data,train_label=get_data('train')
test_data,test_label=get_data('test')
wigth = 225
heigth = 225
channels = 3
lr = 0.001
activation = 'relu'
epochs = 50
batch_size = 128
ToneNet(train_data,train_label,test_data,test_label, wigth,heigth,channels,lr,activation,epochs,batch_size)
main()