-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
45 lines (37 loc) · 1.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch as T
import random
from collections import namedtuple, deque
import numpy as np
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, buffer_size, batch_size, action_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
states = T.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = T.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = T.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = T.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = T.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)