|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "collect-story", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Clean multilevel table\n", |
| 9 | + "* starbucks nutrition: https://www.starbucks.ca/menu/nutrition-info\n", |
| 10 | + "* starbucks bakery nutrition: https://globalassets.starbucks.com/assets/c4874ecf0a8b418f9436b1f1900cc2fa.pdf" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "whole-toolbox", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "---\n", |
| 19 | + "* author: [Prasert Kanawattanachai]([email protected])\n", |
| 20 | + "* YouTube: https://www.youtube.com/prasertcbs\n", |
| 21 | + "* github: https://github.com/prasertcbs/\n", |
| 22 | + "* [Chulalongkorn Business School](https://www.cbs.chula.ac.th/en/)\n", |
| 23 | + "---" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "id": "willing-hardwood", |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "import sys\n", |
| 34 | + "import pandas as pd\n", |
| 35 | + "import numpy as np\n", |
| 36 | + "\n", |
| 37 | + "pd.set_option('display.max_rows', None)\n", |
| 38 | + "\n", |
| 39 | + "%config InlineBackend.figure_format='retina'" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "id": "virgin-miller", |
| 46 | + "metadata": { |
| 47 | + "colab": { |
| 48 | + "base_uri": "https://localhost:8080/", |
| 49 | + "height": 64 |
| 50 | + }, |
| 51 | + "colab_type": "code", |
| 52 | + "id": "fdr0pYIf7P-_", |
| 53 | + "outputId": "c919deae-c99b-44b0-8924-4d2355ca0b63" |
| 54 | + }, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "print(f'Python version: {sys.version}')\n", |
| 58 | + "print(f'pandas version: {pd.__version__}')\n", |
| 59 | + "\n", |
| 60 | + "pd.Timestamp.now()" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "markdown", |
| 65 | + "id": "cooperative-template", |
| 66 | + "metadata": {}, |
| 67 | + "source": [ |
| 68 | + "## read data" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "id": "convinced-insertion", |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "df=pd.read_excel('https://github.com/prasertcbs/basic-dataset/raw/master/starbucks_bakery.xlsx')\n", |
| 79 | + "df" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "id": "postal-ontario", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "df=df.dropna(subset=['Product Name']).reset_index(drop=True) # blank rows\n", |
| 90 | + "df" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": null, |
| 96 | + "id": "living-force", |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "df.info()" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": null, |
| 106 | + "id": "terminal-philippines", |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "df.loc[0, :]" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": null, |
| 116 | + "id": "smooth-greece", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "type(df.loc[0, 'Calories'])" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "id": "numeric-hungarian", |
| 127 | + "metadata": {}, |
| 128 | + "outputs": [], |
| 129 | + "source": [ |
| 130 | + "np.isnan(df.loc[0, 'Calories']) # check numpy.float64 isnan" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": null, |
| 136 | + "id": "cardiovascular-hydrogen", |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "df['Category']=df.apply(lambda r: r['Product Name'] if np.isnan(r['Calories']) else np.nan, axis=1)\n", |
| 141 | + "df" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": null, |
| 147 | + "id": "final-disabled", |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "df['Category']=df['Category'].ffill()" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "id": "fresh-harvey", |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "df" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "id": "sustained-injection", |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [], |
| 170 | + "source": [ |
| 171 | + "df=df.dropna(subset=['Calories']).reset_index(drop=True) # blank rows\n", |
| 172 | + "df" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": null, |
| 178 | + "id": "serious-lighting", |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "df.columns" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "id": "corresponding-counter", |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "df[['Category', 'Product Name', 'Label Wt (g)', 'Calories', 'Total fat (g)',\n", |
| 193 | + " 'Saturated Fat (g)', 'Trans Fat (g)', 'Cholesterol (mg)',\n", |
| 194 | + " 'Sodium (mg)', 'Carbohydrates (g)', 'Fiber (g)', 'Sugar (g)',\n", |
| 195 | + " 'Protein (g)', 'Vitamin A (%DV)', 'Vitamin C (%DV)', 'Calcium (%DV)',\n", |
| 196 | + " 'Iron (%DV)']].to_csv('starbucks_bakery_nutrition_fact.csv', index=False)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": null, |
| 202 | + "id": "pointed-arlington", |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "df[['Category', 'Product Name', 'Label Wt (g)', 'Calories', 'Total fat (g)',\n", |
| 207 | + " 'Saturated Fat (g)', 'Trans Fat (g)', 'Cholesterol (mg)',\n", |
| 208 | + " 'Sodium (mg)', 'Carbohydrates (g)', 'Fiber (g)', 'Sugar (g)',\n", |
| 209 | + " 'Protein (g)', 'Vitamin A (%DV)', 'Vitamin C (%DV)', 'Calcium (%DV)',\n", |
| 210 | + " 'Iron (%DV)']].to_excel('starbucks_bakery_nutrition_fact.xlsx', index=False)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": null, |
| 216 | + "id": "dress-quantum", |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [] |
| 220 | + } |
| 221 | + ], |
| 222 | + "metadata": { |
| 223 | + "kernelspec": { |
| 224 | + "display_name": "Python 3", |
| 225 | + "language": "python", |
| 226 | + "name": "python3" |
| 227 | + }, |
| 228 | + "language_info": { |
| 229 | + "codemirror_mode": { |
| 230 | + "name": "ipython", |
| 231 | + "version": 3 |
| 232 | + }, |
| 233 | + "file_extension": ".py", |
| 234 | + "mimetype": "text/x-python", |
| 235 | + "name": "python", |
| 236 | + "nbconvert_exporter": "python", |
| 237 | + "pygments_lexer": "ipython3", |
| 238 | + "version": "3.7.9" |
| 239 | + }, |
| 240 | + "widgets": { |
| 241 | + "application/vnd.jupyter.widget-state+json": { |
| 242 | + "state": {}, |
| 243 | + "version_major": 2, |
| 244 | + "version_minor": 0 |
| 245 | + } |
| 246 | + } |
| 247 | + }, |
| 248 | + "nbformat": 4, |
| 249 | + "nbformat_minor": 5 |
| 250 | +} |
0 commit comments