Skip to content

Commit 4362dd3

Browse files
authored
Apply suggestions from code review
Let the equations be formatted on GitHub...
1 parent b3bc3a0 commit 4362dd3

File tree

1 file changed

+4
-24
lines changed

1 file changed

+4
-24
lines changed

chapter2/linear-elasticity-intro.md

Lines changed: 4 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,10 @@
44
The governing equations for small elastic deformations of a body $\Omega$ can be expressed as:
55

66
$$
7-
8-
\begin{align}
7+
\begin{aligned}
98
-\nabla \cdot \sigma(u) &= f & \text{in } \Omega \\
109
\sigma(u) &= C : \epsilon(u) & \text{in } \Omega \\
11-
\end{align}
12-
10+
\end{aligned}
1311
$$
1412

1513
where :
@@ -25,13 +23,11 @@ Then, the strong formulation of linear elasticity is :
2523
Find $u \in V$ such that
2624

2725
$$
28-
29-
\begin{align}
26+
\begin{aligned}
3027
-\nabla \cdot \sigma (u) &= f & \text{in } & \Omega \\
3128
u &= 0 & \text{on } & \partial \Omega_D \\
3229
\sigma(u) \cdot n &= g_T & \text{on } & \partial \Omega_T
33-
\end{align}
34-
30+
\end{aligned}
3531
$$
3632

3733
where :
@@ -48,46 +44,37 @@ where :
4844
The variational formulation of the linear elasticity equations involves forming the inner product of the PDE with a vector test function $ v \in V $ and integrating over the domain $ \Omega $. This yields:
4945

5046
$$
51-
5247
\int_{\Omega} - \nabla \cdot \sigma(u) \cdot v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x
53-
5448
$$
5549

5650
Integrating the term $ \nabla \cdot \sigma(u) \cdot v $ by parts, considering boundary conditions, we obtain:
5751

5852
$$
59-
6053
\int_{\Omega} \sigma(u) : \nabla v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
61-
6254
$$
6355

6456
By using the symmetry of the stress tensor $ \sigma $ and its definition from $(2)$, we can notice that :
6557

6658
$$
67-
6859
\begin{aligned}
6960
\int_{\Omega} \sigma(u) : \nabla v \, \mathrm{d} x &= \int_{\Omega} \sigma(u) : \epsilon(v) \, \mathrm{d} x = \int_{\Omega} C : \epsilon(u) : \epsilon(v) \, \mathrm{d} x \\ &= \int_{\Omega} \epsilon(u) : C : \epsilon(v) \, \mathrm{d} x
7061
\end{aligned}
71-
7262
$$
7363

7464
This leads to the following variational formulation:
7565

7666
$$
77-
7867
\boxed{
7968
\begin{aligned}
8069
&\text{Find } u \in V \text{ such that:} \\
8170
&\qquad a(u, v) = L(v) \quad \forall v \in V
8271
\end{aligned}
8372
}
84-
8573
$$
8674

8775
with
8876

8977
$$
90-
9178
\begin{aligned}
9279
&a :
9380
\begin{cases}
@@ -100,37 +87,31 @@ V \rightarrow \mathbb{R} \\
10087
v \longmapsto \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
10188
\end{cases}
10289
\end{aligned}
103-
10490
$$
10591

10692
## Isotropic Materials
10793
For isotropic materials, the elasticity tensor $C$ can be expressed in terms of the Lamé parameters $\lambda$ and $\mu$ as follows:
10894

10995
$$
110-
11196
C := \lambda (\nabla \cdot u) I_3 + 2\mu \epsilon(u)
112-
11397
$$
11498
Then, the stress tensor can be expressed as:
11599
$$\sigma(u) = \lambda (\nabla \cdot u) I_3 + 2\mu \epsilon(u)$$
116100

117101

118102
This leads to the variational formulation:
119103
$$
120-
121104
\boxed{
122105
\begin{aligned}
123106
&\text{Find } u \in V \text{ such that:}
124107
\\
125108
&\qquad a(u, v) = L(v) \quad \forall v \in V
126109
\end{aligned}
127110
}
128-
129111
$$
130112

131113
with
132114
$$
133-
134115
\begin{aligned}
135116
&a :\begin{cases}
136117
V \times V \rightarrow \mathbb{R} \\
@@ -141,7 +122,6 @@ V \rightarrow \mathbb{R} \\
141122
v \longmapsto \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
142123
\end{cases}
143124
\end{aligned}
144-
145125
$$
146126

147127
With this formulation, the problem is well-posed under the assumption that the material is isotropic and the boundary conditions are properly defined. While $\frac{\lambda}{\mu}$ is not too large (typically $\frac{\lambda}{\mu} \leq 10^4$), the problem remains well-posed numerically. However, as $\frac{\lambda}{\mu}$ increases, the problem can become ill-posed, leading to numerical difficulties in finding a solution. The first notebook of this chapter illustrates the case of isotropic materials with $\frac{\lambda}{\mu} \leq 10^4$ and the second notebook is trying to illustrate the case of isotropic materials with $\frac{\lambda}{\mu} > 10^4$.

0 commit comments

Comments
 (0)