You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The variational formulation of the linear elasticity equations involves forming the inner product of the PDE with a vector test function $ v \in V $ and integrating over the domain $ \Omega $. This yields:
49
45
50
46
$$
51
-
52
47
\int_{\Omega} - \nabla \cdot \sigma(u) \cdot v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x
53
-
54
48
$$
55
49
56
50
Integrating the term $ \nabla \cdot \sigma(u) \cdot v $ by parts, considering boundary conditions, we obtain:
57
51
58
52
$$
59
-
60
53
\int_{\Omega} \sigma(u) : \nabla v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
61
-
62
54
$$
63
55
64
56
By using the symmetry of the stress tensor $ \sigma $ and its definition from $(2)$, we can notice that :
65
57
66
58
$$
67
-
68
59
\begin{aligned}
69
60
\int_{\Omega} \sigma(u) : \nabla v \, \mathrm{d} x &= \int_{\Omega} \sigma(u) : \epsilon(v) \, \mathrm{d} x = \int_{\Omega} C : \epsilon(u) : \epsilon(v) \, \mathrm{d} x \\ &= \int_{\Omega} \epsilon(u) : C : \epsilon(v) \, \mathrm{d} x
70
61
\end{aligned}
71
-
72
62
$$
73
63
74
64
This leads to the following variational formulation:
75
65
76
66
$$
77
-
78
67
\boxed{
79
68
\begin{aligned}
80
69
&\text{Find } u \in V \text{ such that:} \\
81
70
&\qquad a(u, v) = L(v) \quad \forall v \in V
82
71
\end{aligned}
83
72
}
84
-
85
73
$$
86
74
87
75
with
88
76
89
77
$$
90
-
91
78
\begin{aligned}
92
79
&a :
93
80
\begin{cases}
@@ -100,37 +87,31 @@ V \rightarrow \mathbb{R} \\
100
87
v \longmapsto \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
101
88
\end{cases}
102
89
\end{aligned}
103
-
104
90
$$
105
91
106
92
## Isotropic Materials
107
93
For isotropic materials, the elasticity tensor $C$ can be expressed in terms of the Lamé parameters $\lambda$ and $\mu$ as follows:
108
94
109
95
$$
110
-
111
96
C := \lambda (\nabla \cdot u) I_3 + 2\mu \epsilon(u)
v \longmapsto \int_{\Omega} f \cdot v \, \mathrm{d} x + \int_{\partial \Omega_T} g_T \cdot v \, \mathrm{d} s
142
123
\end{cases}
143
124
\end{aligned}
144
-
145
125
$$
146
126
147
127
With this formulation, the problem is well-posed under the assumption that the material is isotropic and the boundary conditions are properly defined. While $\frac{\lambda}{\mu}$ is not too large (typically $\frac{\lambda}{\mu} \leq 10^4$), the problem remains well-posed numerically. However, as $\frac{\lambda}{\mu}$ increases, the problem can become ill-posed, leading to numerical difficulties in finding a solution. The first notebook of this chapter illustrates the case of isotropic materials with $\frac{\lambda}{\mu} \leq 10^4$ and the second notebook is trying to illustrate the case of isotropic materials with $\frac{\lambda}{\mu} > 10^4$.
0 commit comments