|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "**Note: This notebook must be changed by the student. As it is now, it does not approximate the solution to the Poisson problem!**" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "# 2D Poisson Solver on the Unit Square\n", |
| 15 | + "## ... using Psydac's bilinear form interface\n", |
| 16 | + "\n", |
| 17 | + "In this exercise we write a solver for the 2D Poisson problem with natural BCs on the unit square using Psydac's bilinear form interface.\n", |
| 18 | + "\n", |
| 19 | + "\\begin{align*}\n", |
| 20 | + " -\\Delta\\phi &= f \\quad \\text{ in }\\Omega=]0,1[^2, \\\\\n", |
| 21 | + " \\frac{\\partial\\phi}{\\partial \\boldsymbol{n}} &= 0 \\quad \\text{ on }\\partial\\Omega,\n", |
| 22 | + "\\end{align*}\n", |
| 23 | + "for the specific choice\n", |
| 24 | + "\\begin{align*}\n", |
| 25 | + " f(x, y) = 8\\pi^2\\cos(2\\pi x)\\cos(2\\pi y)\n", |
| 26 | + "\\end{align*}\n", |
| 27 | + "\n", |
| 28 | + "## The Variational Formulation\n", |
| 29 | + "\n", |
| 30 | + "The corresponding variational formulation reads\n", |
| 31 | + "\n", |
| 32 | + "\\begin{align*}\n", |
| 33 | + " \\text{Find }\\phi\\in V\\coloneqq H^1(\\Omega)\\text{ such that } \\\\\n", |
| 34 | + " a(\\phi, \\psi) = l(\\psi)\\quad\\forall\\ \\psi\\in V\n", |
| 35 | + "\\end{align*}\n", |
| 36 | + "\n", |
| 37 | + "where \n", |
| 38 | + "- $a(\\phi,\\psi) \\coloneqq \\int_{\\Omega} \\nabla\\phi\\cdot\\nabla\\psi ~ d\\Omega$,\n", |
| 39 | + "- $l(\\psi) := \\int_{\\Omega} f\\psi ~ d\\Omega$." |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Formal Model" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": null, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "from sympde.calculus import dot, grad\n", |
| 56 | + "from sympde.expr import BilinearForm, LinearForm, integral\n", |
| 57 | + "from sympde.topology import elements_of, Square, ScalarFunctionSpace\n", |
| 58 | + "\n", |
| 59 | + "domain = Square('S', bounds1=(0, 1), bounds2=(0, 1))\n", |
| 60 | + "\n", |
| 61 | + "V = ScalarFunctionSpace('V', domain, kind='h1')\n", |
| 62 | + "\n", |
| 63 | + "phi, psi = elements_of(V, names='phi, psi')\n", |
| 64 | + "\n", |
| 65 | + "# bilinear form\n", |
| 66 | + "a = BilinearForm((phi, psi), integral(domain, dot(grad(phi), grad(psi))))\n", |
| 67 | + "\n", |
| 68 | + "# linear form\n", |
| 69 | + "from sympy import pi, sin, cos, exp\n", |
| 70 | + "x,y = domain.coordinates\n", |
| 71 | + "f = 8 * pi**2 * cos(2*pi*x) * cos(2*pi*y)\n", |
| 72 | + "\n", |
| 73 | + "l = LinearForm(psi, integral(domain, f*psi))" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "## Discretization\n", |
| 81 | + "\n", |
| 82 | + "We will use Psydac to discretize the problem." |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "from psydac.api.discretization import discretize\n", |
| 92 | + "from psydac.api.settings import PSYDAC_BACKEND_GPYCCEL\n", |
| 93 | + "\n", |
| 94 | + "backend = PSYDAC_BACKEND_GPYCCEL" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "ncells = [16, 16] # Bspline cells\n", |
| 104 | + "degree = [3, 3] # Bspline degree" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "domain_h = discretize(domain, ncells=ncells, periodic=[False, False])\n", |
| 114 | + "V_h = discretize(V, domain_h, degree=degree)\n", |
| 115 | + "\n", |
| 116 | + "a_h = discretize(a, domain_h, (V_h, V_h), backend=backend)\n", |
| 117 | + "l_h = discretize(l, domain_h, V_h, backend=backend)" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## Boundary Conditions\n", |
| 125 | + "\n", |
| 126 | + "We must not take care of boundary conditions. They are included **naturally** in the variational formulation." |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "A = a_h.assemble()\n", |
| 136 | + "f = l_h.assemble()" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "## Solving the PDE" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "import time\n", |
| 153 | + "\n", |
| 154 | + "from psydac.linalg.solvers import inverse\n", |
| 155 | + "\n", |
| 156 | + "tol = 1e-12\n", |
| 157 | + "maxiter = 1000\n", |
| 158 | + "\n", |
| 159 | + "A_bc_inv = inverse(A, 'cg', tol=tol, maxiter=maxiter)\n", |
| 160 | + "\n", |
| 161 | + "t0 = time.time()\n", |
| 162 | + "phi_h = A_bc_inv @ f\n", |
| 163 | + "t1 = time.time()" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "## Computing the error norm\n", |
| 171 | + "\n", |
| 172 | + "When the analytical solution is available, you might be interested in computing the $L^2$ norm or $H^1_0$ semi-norm.\n", |
| 173 | + "SymPDE allows you to do so, by creating the **Norm** object.\n", |
| 174 | + "In this example, the analytical solution is given by\n", |
| 175 | + "\n", |
| 176 | + "$$\n", |
| 177 | + "phi_{ex}(x, y) = \\cos(2\\pi x)\\cos(2\\pi y)\n", |
| 178 | + "$$" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "### Computing the $L^2$ norm" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "from psydac.fem.basic import FemField\n", |
| 195 | + "\n", |
| 196 | + "from sympde.expr import Norm, SemiNorm\n", |
| 197 | + "\n", |
| 198 | + "phi_ex = cos(2*pi*x) * cos(2*pi*y)\n", |
| 199 | + "phi_h_FemField = FemField(V_h, phi_h)\n", |
| 200 | + "\n", |
| 201 | + "error = phi_ex - phi\n", |
| 202 | + "\n", |
| 203 | + "# create the formal Norm object\n", |
| 204 | + "l2norm = Norm(error, domain, kind='l2')\n", |
| 205 | + "\n", |
| 206 | + "# discretize the norm\n", |
| 207 | + "l2norm_h = discretize(l2norm, domain_h, V_h, backend=backend)\n", |
| 208 | + "\n", |
| 209 | + "# assemble the norm\n", |
| 210 | + "l2_error = l2norm_h.assemble(phi=phi_h_FemField)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "### Computing the $H^1$ semi-norm" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": null, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "# create the formal Norm object\n", |
| 227 | + "h1norm = SemiNorm(error, domain, kind='h1')\n", |
| 228 | + "\n", |
| 229 | + "# discretize the norm\n", |
| 230 | + "h1norm_h = discretize(h1norm, domain_h, V_h)\n", |
| 231 | + "\n", |
| 232 | + "# assemble the norm\n", |
| 233 | + "h1semi_error = h1norm_h.assemble(phi=phi_h_FemField)" |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "markdown", |
| 238 | + "metadata": {}, |
| 239 | + "source": [ |
| 240 | + "### Computing the $H^1$ norm" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "code", |
| 245 | + "execution_count": null, |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "# create the formal Norm object\n", |
| 250 | + "h1norm = Norm(error, domain, kind='h1')\n", |
| 251 | + "\n", |
| 252 | + "# discretize the norm\n", |
| 253 | + "h1norm_h = discretize(h1norm, domain_h, V_h)\n", |
| 254 | + "\n", |
| 255 | + "# assemble the norm\n", |
| 256 | + "h1_error = h1norm_h.assemble(phi=phi_h_FemField)\n", |
| 257 | + "\n", |
| 258 | + "# print the result\n", |
| 259 | + "print( '> Grid :: [{ne1},{ne2}]'.format( ne1=ncells[0], ne2=ncells[1]) )\n", |
| 260 | + "print( '> Degree :: [{p1},{p2}]' .format( p1=degree[0], p2=degree[1] ) )\n", |
| 261 | + "print( '> CG info :: ',A_bc_inv.get_info() )\n", |
| 262 | + "print( '> L2 error :: {:.2e}'.format( l2_error ) )\n", |
| 263 | + "print( '> H1-Semi error :: {:.2e}'.format( h1semi_error ) )\n", |
| 264 | + "print( '> H1 error :: {:.2e}'.format( h1_error ) )\n", |
| 265 | + "print( '' )\n", |
| 266 | + "print( '> Solution time :: {:.3g}'.format( t1-t0 ) )" |
| 267 | + ] |
| 268 | + }, |
| 269 | + { |
| 270 | + "cell_type": "markdown", |
| 271 | + "metadata": {}, |
| 272 | + "source": [ |
| 273 | + "## Visualization\n", |
| 274 | + "\n", |
| 275 | + "We plot the true solution $\\phi_{ex}$, the approximate solution $\\phi_h$ and the error function $|\\phi_{ex} - \\phi_h|$." |
| 276 | + ] |
| 277 | + }, |
| 278 | + { |
| 279 | + "cell_type": "code", |
| 280 | + "execution_count": null, |
| 281 | + "metadata": {}, |
| 282 | + "outputs": [], |
| 283 | + "source": [ |
| 284 | + "from sympy import lambdify\n", |
| 285 | + "\n", |
| 286 | + "from utils import plot\n", |
| 287 | + "\n", |
| 288 | + "phi_ex_fun = lambdify(domain.coordinates, phi_ex)\n", |
| 289 | + "error = lambda x, y: abs(phi_ex_fun(x, y) - phi_h_FemField(x, y))\n", |
| 290 | + "\n", |
| 291 | + "plot(gridsize_x = 100, \n", |
| 292 | + " gridsize_y = 100, \n", |
| 293 | + " title = r'Approximation of Solution $\\phi$', \n", |
| 294 | + " funs = [phi_ex_fun, phi_h_FemField, error], \n", |
| 295 | + " titles = [r'$\\phi_{ex}(x,y)$', r'$\\phi_h(x,y)$', r'$|(\\phi_{ex}-\\phi_h)(x,y)|$'],\n", |
| 296 | + " surface_plot = True\n", |
| 297 | + ")" |
| 298 | + ] |
| 299 | + } |
| 300 | + ], |
| 301 | + "metadata": {}, |
| 302 | + "nbformat": 4, |
| 303 | + "nbformat_minor": 4 |
| 304 | +} |
0 commit comments