|
1 | 1 | # Linear Elasticity |
2 | 2 |
|
3 | 3 | ## The PDE problem |
4 | | -The governing equations for small elastic deformations of a body $ \Omega $ can be expressed as: |
| 4 | +The governing equations for small elastic deformations of a body $\Omega$ can be expressed as: |
5 | 5 |
|
6 | 6 | $$ |
7 | 7 | \begin{align} |
|
10 | 10 | \end{align} |
11 | 11 | $$ |
12 | 12 |
|
13 | | -where $ \sigma $ is the stress tensor, $ f $ represents the body force per unit volume, $ \kappa $ and $ \mu $ are Lamé's elasticity parameters for the material, $ I $ denotes the identity tensor, $ \epsilon $ is the symmetric strain tensor and the displacement vector field is denoted by $ u $. $ \epsilon := \frac{1}{2}(\nabla u + (\nabla u)^T) $ |
| 13 | +where $\sigma$ is the stress tensor, $f$ represents the body force per unit volume, $\kappa$ and $\mu$ are Lamé's elasticity parameters for the material, $I$ denotes the identity tensor, $\epsilon$ is the symmetric strain tensor and the displacement vector field is denoted by $u$. $\epsilon := \frac{1}{2}(\nabla u + (\nabla u)^T)$ |
14 | 14 |
|
15 | 15 |
|
16 | 16 |
|
17 | | -By substituting $ \epsilon(u) $ into $ \sigma $, we obtain: |
| 17 | +By substituting $\epsilon(u)$ into $\sigma$, we obtain: |
18 | 18 |
|
19 | 19 | $$ |
20 | 20 | \sigma(u) = \kappa (\nabla \cdot u)I + \mu(\nabla u + (\nabla u)^T) |
21 | 21 | $$ |
22 | 22 |
|
23 | 23 | Then, the strong formulation of linear elasticity is : |
24 | | -Find $ u \in V $ such that |
| 24 | +Find $u \in V$ such that |
25 | 25 |
|
26 | 26 | $$ |
27 | 27 | \begin{align} |
|
32 | 32 | $$ |
33 | 33 |
|
34 | 34 | where : |
35 | | -- $ V = \{ v \in (H^1(\Omega))^3 : v = 0 \text{ on } \partial \Omega_D \} $, |
| 35 | +- $V = \{ v \in (H^1(\Omega))^3 : v = 0 \text{ on } \partial \Omega_D \}$, |
36 | 36 |
|
37 | | -- $ g_D $ is the Dirichlet boundary condition on the part $ \partial \Omega_D $ of the boundary, |
| 37 | +- $g_D$ is the Dirichlet boundary condition on the part $\partial \Omega_D$ of the boundary, |
38 | 38 |
|
39 | | -- $ g_T $ is the traction vector on the part $ \partial \Omega_T $ of the boundary, |
| 39 | +- $g_T$ is the traction vector on the part $\partial \Omega_T$ of the boundary, |
40 | 40 |
|
41 | | -- $ n $ is the outward normal vector on the boundary $ \partial \Omega $, |
| 41 | +- $n$ is the outward normal vector on the boundary $\partial \Omega$, |
42 | 42 |
|
43 | | -- $ \partial \Omega_D \cap \partial \Omega_T = \emptyset $ and $ \partial \Omega = \partial \Omega_D \cup \partial \Omega_T $. |
| 43 | +- $\partial \Omega_D \cap \partial \Omega_T = \emptyset$ and $\partial \Omega = \partial \Omega_D \cup \partial \Omega_T$. |
0 commit comments