Skip to content

Commit b98c4c6

Browse files
authored
Fix inline math in linear-elasticity-intro.md
Make sure that all inline math can be displayed correctly in the GitHub preview for markdown files.
1 parent 8e59485 commit b98c4c6

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed
Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Linear Elasticity
22

33
## The PDE problem
4-
The governing equations for small elastic deformations of a body $ \Omega $ can be expressed as:
4+
The governing equations for small elastic deformations of a body $\Omega$ can be expressed as:
55

66
$$
77
\begin{align}
@@ -10,18 +10,18 @@ $$
1010
\end{align}
1111
$$
1212

13-
where $ \sigma $ is the stress tensor, $ f $ represents the body force per unit volume, $ \kappa $ and $ \mu $ are Lamé's elasticity parameters for the material, $ I $ denotes the identity tensor, $ \epsilon $ is the symmetric strain tensor and the displacement vector field is denoted by $ u $. $ \epsilon := \frac{1}{2}(\nabla u + (\nabla u)^T) $
13+
where $\sigma$ is the stress tensor, $f$ represents the body force per unit volume, $\kappa$ and $\mu$ are Lamé's elasticity parameters for the material, $I$ denotes the identity tensor, $\epsilon$ is the symmetric strain tensor and the displacement vector field is denoted by $u$. $\epsilon := \frac{1}{2}(\nabla u + (\nabla u)^T)$
1414

1515

1616

17-
By substituting $ \epsilon(u) $ into $ \sigma $, we obtain:
17+
By substituting $\epsilon(u)$ into $\sigma$, we obtain:
1818

1919
$$
2020
\sigma(u) = \kappa (\nabla \cdot u)I + \mu(\nabla u + (\nabla u)^T)
2121
$$
2222

2323
Then, the strong formulation of linear elasticity is :
24-
Find $ u \in V $ such that
24+
Find $u \in V$ such that
2525

2626
$$
2727
\begin{align}
@@ -32,12 +32,12 @@ $$
3232
$$
3333

3434
where :
35-
- $ V = \{ v \in (H^1(\Omega))^3 : v = 0 \text{ on } \partial \Omega_D \} $,
35+
- $V = \{ v \in (H^1(\Omega))^3 : v = 0 \text{ on } \partial \Omega_D \}$,
3636

37-
- $ g_D $ is the Dirichlet boundary condition on the part $ \partial \Omega_D $ of the boundary,
37+
- $g_D$ is the Dirichlet boundary condition on the part $\partial \Omega_D$ of the boundary,
3838

39-
- $ g_T $ is the traction vector on the part $ \partial \Omega_T $ of the boundary,
39+
- $g_T$ is the traction vector on the part $\partial \Omega_T$ of the boundary,
4040

41-
- $ n $ is the outward normal vector on the boundary $ \partial \Omega $,
41+
- $n$ is the outward normal vector on the boundary $\partial \Omega$,
4242

43-
- $ \partial \Omega_D \cap \partial \Omega_T = \emptyset $ and $ \partial \Omega = \partial \Omega_D \cup \partial \Omega_T $.
43+
- $\partial \Omega_D \cap \partial \Omega_T = \emptyset$ and $\partial \Omega = \partial \Omega_D \cup \partial \Omega_T$.

0 commit comments

Comments
 (0)