|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "这是Python,TensorFlow和Keras教程系列的深度学习基础知识的第4部分。\n", |
| 8 | + "\n", |
| 9 | + "在这一部分,我们将讨论的是TensorBoard。TensorBoard是一个方便的应用程序,允许您在浏览器中查看模型或模型的各个方面。我们将TensorBoard与Keras一起使用的方式是通过Keras回调。实际上有很多Keras回调,你可以自己制作。" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [ |
| 17 | + { |
| 18 | + "name": "stderr", |
| 19 | + "output_type": "stream", |
| 20 | + "text": [ |
| 21 | + "Using TensorFlow backend.\n" |
| 22 | + ] |
| 23 | + } |
| 24 | + ], |
| 25 | + "source": [ |
| 26 | + "from keras.callbacks import TensorBoard\n", |
| 27 | + "from keras." |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 2, |
| 33 | + "metadata": { |
| 34 | + "collapsed": true |
| 35 | + }, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "#创建TensorBoard回调对象\n", |
| 39 | + "NAME = \"Cats-vs-dogs-CNN\"\n", |
| 40 | + "\n", |
| 41 | + "tensorboard = TensorBoard(log_dir=\"logs/{}\".format(NAME))" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "metadata": {}, |
| 47 | + "source": [ |
| 48 | + "最终,你会希望获得更多的自定义NAME,但现在这样做。因此,这将保存模型的训练数据logs/NAME,然后由TensorBoard读取。\n", |
| 49 | + "\n", |
| 50 | + "最后,我们可以通过将它添加到.fit方法中来将此回调添加到我们的模型中,例如:\n", |
| 51 | + "```python\n", |
| 52 | + "model.fit(X, y,\n", |
| 53 | + " batch_size=32,\n", |
| 54 | + " epochs=3,\n", |
| 55 | + " validation_split=0.3,\n", |
| 56 | + " callbacks=[tensorboard])\n", |
| 57 | + "```\n", |
| 58 | + "请注意,这callbacks是一个列表。您也可以将其他回调传递到此列表中。我们的模型还没有定义,所以现在让我们把它们放在一起:" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 4, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "name": "stdout", |
| 68 | + "output_type": "stream", |
| 69 | + "text": [ |
| 70 | + "Train on 17462 samples, validate on 7484 samples\n", |
| 71 | + "Epoch 1/3\n", |
| 72 | + "17462/17462 [==============================] - 44s 3ms/step - loss: 0.6992 - acc: 0.5480 - val_loss: 0.6900 - val_acc: 0.5274\n", |
| 73 | + "Epoch 2/3\n", |
| 74 | + "17462/17462 [==============================] - 41s 2ms/step - loss: 0.6754 - acc: 0.5782 - val_loss: 0.6685 - val_acc: 0.5885\n", |
| 75 | + "Epoch 3/3\n", |
| 76 | + "17462/17462 [==============================] - 41s 2ms/step - loss: 0.6377 - acc: 0.6483 - val_loss: 0.6217 - val_acc: 0.6625\n" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "data": { |
| 81 | + "text/plain": [ |
| 82 | + "<keras.callbacks.History at 0x7ff86d691c18>" |
| 83 | + ] |
| 84 | + }, |
| 85 | + "execution_count": 4, |
| 86 | + "metadata": {}, |
| 87 | + "output_type": "execute_result" |
| 88 | + } |
| 89 | + ], |
| 90 | + "source": [ |
| 91 | + "import tensorflow as tf\n", |
| 92 | + "from tensorflow.keras.datasets import cifar10\n", |
| 93 | + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", |
| 94 | + "from tensorflow.keras.models import Sequential\n", |
| 95 | + "from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten\n", |
| 96 | + "from tensorflow.keras.layers import Conv2D, MaxPooling2D\n", |
| 97 | + "from tensorflow.keras.callbacks import TensorBoard\n", |
| 98 | + "# more info on callbakcs: https://keras.io/callbacks/ model saver is cool too.\n", |
| 99 | + "import pickle\n", |
| 100 | + "import time\n", |
| 101 | + "\n", |
| 102 | + "NAME = \"Cats-vs-dogs-CNN\"\n", |
| 103 | + "\n", |
| 104 | + "pickle_in = open(\"../datasets/X.pickle\",\"rb\")\n", |
| 105 | + "X = pickle.load(pickle_in)\n", |
| 106 | + "\n", |
| 107 | + "pickle_in = open(\"../datasets/y.pickle\",\"rb\")\n", |
| 108 | + "y = pickle.load(pickle_in)\n", |
| 109 | + "\n", |
| 110 | + "X = X/255.0\n", |
| 111 | + "\n", |
| 112 | + "model = Sequential()\n", |
| 113 | + "\n", |
| 114 | + "model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:]))\n", |
| 115 | + "model.add(Activation('relu'))\n", |
| 116 | + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", |
| 117 | + "\n", |
| 118 | + "model.add(Conv2D(256, (3, 3)))\n", |
| 119 | + "model.add(Activation('relu'))\n", |
| 120 | + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", |
| 121 | + "\n", |
| 122 | + "model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors\n", |
| 123 | + "model.add(Dense(64))\n", |
| 124 | + "\n", |
| 125 | + "model.add(Dense(1))\n", |
| 126 | + "model.add(Activation('sigmoid'))\n", |
| 127 | + "\n", |
| 128 | + "tensorboard = TensorBoard(log_dir=\"logs/{}\".format(NAME))\n", |
| 129 | + "\n", |
| 130 | + "model.compile(loss='binary_crossentropy',\n", |
| 131 | + " optimizer='adam',\n", |
| 132 | + " metrics=['accuracy'],\n", |
| 133 | + " )\n", |
| 134 | + "\n", |
| 135 | + "model.fit(X, y,\n", |
| 136 | + " batch_size=32,\n", |
| 137 | + " epochs=3,\n", |
| 138 | + " validation_split=0.3,\n", |
| 139 | + " callbacks=[tensorboard])" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "运行此之后,您应该有一个名为的新目录logs。我们现在可以使用tensorboard从这个目录中可视化初始结果。打开控制台,切换到工作目录,然后键入:tensorboard --logdir=logs/。您应该看到一个通知:TensorBoard 1.10.0 at http://H-PC:6006 (Press CTRL+C to quit)“h-pc”是您机器的名称。打开浏览器并前往此地址。你应该看到类似的东西:\n", |
| 147 | + "<img src = \"https://pythonprogramming.net/static/images/machine-learning/tensorboard-basic.png\">\n", |
| 148 | + "现在我们可以看到我们的模型随着时间的推移。让我们改变模型中的一些东西。首先,我们从未在密集层中添加激活。另外,让我们尝试整体较小的模型:" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": 5, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [ |
| 156 | + { |
| 157 | + "name": "stdout", |
| 158 | + "output_type": "stream", |
| 159 | + "text": [ |
| 160 | + "Train on 17462 samples, validate on 7484 samples\n", |
| 161 | + "Epoch 1/10\n", |
| 162 | + "17462/17462 [==============================] - 11s 604us/step - loss: 0.6033 - acc: 0.6652 - val_loss: 0.5298 - val_acc: 0.7320\n", |
| 163 | + "Epoch 2/10\n", |
| 164 | + "17462/17462 [==============================] - 11s 646us/step - loss: 0.4859 - acc: 0.7659 - val_loss: 0.4723 - val_acc: 0.7763\n", |
| 165 | + "Epoch 3/10\n", |
| 166 | + "17462/17462 [==============================] - 11s 641us/step - loss: 0.4270 - acc: 0.8045 - val_loss: 0.4603 - val_acc: 0.7803\n", |
| 167 | + "Epoch 4/10\n", |
| 168 | + "17462/17462 [==============================] - 12s 699us/step - loss: 0.3675 - acc: 0.8347 - val_loss: 0.4476 - val_acc: 0.7929\n", |
| 169 | + "Epoch 5/10\n", |
| 170 | + "17462/17462 [==============================] - 12s 707us/step - loss: 0.3012 - acc: 0.8694 - val_loss: 0.4854 - val_acc: 0.7797\n", |
| 171 | + "Epoch 6/10\n", |
| 172 | + "17462/17462 [==============================] - 12s 705us/step - loss: 0.2165 - acc: 0.9118 - val_loss: 0.5450 - val_acc: 0.7865\n", |
| 173 | + "Epoch 7/10\n", |
| 174 | + "17462/17462 [==============================] - 12s 712us/step - loss: 0.1332 - acc: 0.9510 - val_loss: 0.6512 - val_acc: 0.7821\n", |
| 175 | + "Epoch 8/10\n", |
| 176 | + "17462/17462 [==============================] - 12s 705us/step - loss: 0.0764 - acc: 0.9743 - val_loss: 0.7487 - val_acc: 0.7809\n", |
| 177 | + "Epoch 9/10\n", |
| 178 | + "17462/17462 [==============================] - 12s 713us/step - loss: 0.0389 - acc: 0.9887 - val_loss: 0.9041 - val_acc: 0.7743\n", |
| 179 | + "Epoch 10/10\n", |
| 180 | + "17462/17462 [==============================] - 12s 708us/step - loss: 0.0287 - acc: 0.9921 - val_loss: 1.0411 - val_acc: 0.7702\n" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "data": { |
| 185 | + "text/plain": [ |
| 186 | + "<keras.callbacks.History at 0x7ff86073ec50>" |
| 187 | + ] |
| 188 | + }, |
| 189 | + "execution_count": 5, |
| 190 | + "metadata": {}, |
| 191 | + "output_type": "execute_result" |
| 192 | + } |
| 193 | + ], |
| 194 | + "source": [ |
| 195 | + "from tensorflow.keras.models import Sequential\n", |
| 196 | + "from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten\n", |
| 197 | + "from tensorflow.keras.layers import Conv2D, MaxPooling2D\n", |
| 198 | + "from tensorflow.keras.callbacks import TensorBoard\n", |
| 199 | + "# more info on callbakcs: https://keras.io/callbacks/ model saver is cool too.\n", |
| 200 | + "import pickle\n", |
| 201 | + "import time\n", |
| 202 | + "\n", |
| 203 | + "NAME = \"Cats-vs-dogs-64x2-CNN\"\n", |
| 204 | + "\n", |
| 205 | + "pickle_in = open(\"../datasets/X.pickle\",\"rb\")\n", |
| 206 | + "X = pickle.load(pickle_in)\n", |
| 207 | + "\n", |
| 208 | + "pickle_in = open(\"../datasets/y.pickle\",\"rb\")\n", |
| 209 | + "y = pickle.load(pickle_in)\n", |
| 210 | + "\n", |
| 211 | + "X = X/255.0\n", |
| 212 | + "\n", |
| 213 | + "model = Sequential()\n", |
| 214 | + "\n", |
| 215 | + "model.add(Conv2D(64, (3, 3), input_shape=X.shape[1:]))\n", |
| 216 | + "model.add(Activation('relu'))\n", |
| 217 | + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", |
| 218 | + "\n", |
| 219 | + "model.add(Conv2D(64, (3, 3)))\n", |
| 220 | + "model.add(Activation('relu'))\n", |
| 221 | + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", |
| 222 | + "\n", |
| 223 | + "model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors\n", |
| 224 | + "model.add(Dense(64))\n", |
| 225 | + "model.add(Activation('relu'))\n", |
| 226 | + "\n", |
| 227 | + "model.add(Dense(1))\n", |
| 228 | + "model.add(Activation('sigmoid'))\n", |
| 229 | + "\n", |
| 230 | + "tensorboard = TensorBoard(log_dir=\"logs/{}\".format(NAME))\n", |
| 231 | + "\n", |
| 232 | + "model.compile(loss='binary_crossentropy',\n", |
| 233 | + " optimizer='adam',\n", |
| 234 | + " metrics=['accuracy'],\n", |
| 235 | + " )\n", |
| 236 | + "\n", |
| 237 | + "model.fit(X, y,\n", |
| 238 | + " batch_size=32,\n", |
| 239 | + " epochs=10,\n", |
| 240 | + " validation_split=0.3,\n", |
| 241 | + " callbacks=[tensorboard])" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "markdown", |
| 246 | + "metadata": {}, |
| 247 | + "source": [ |
| 248 | + "除此之外,我还改名为NAME = \"Cats-vs-dogs-64x2-CNN\"。不要忘记这样做,否则你会偶然附加到你以前的型号的日志,它看起来不太好。我们现在检查TensorBoard:\n", |
| 249 | + "<img src = \"https://pythonprogramming.net/static/images/machine-learning/second-model-tensorboard.png\">\n", |
| 250 | + "看起来更好!但是,您可能会立即注意到验证丢失的形状。损失是衡量错误的标准,看起来很明显,在我们的第四个时代之后,事情开始变得糟糕。\n", |
| 251 | + "\n", |
| 252 | + "有趣的是,我们的验证准确性仍然持续,但我想它最终会开始下降。更可能的是,第一件遭受的事情确实是你的验证损失。这应该提醒你,你几乎肯定会开始过度适应。这种情况发生的原因是该模型不断尝试减少样本损失。\n", |
| 253 | + "\n", |
| 254 | + "在某些时候,模型不是学习关于实际数据的一般事物,而是开始只记忆输入数据。如果你继续这样做,是的,样本中的“准确性”会上升,但你的样本,以及你试图为模型提供的任何新数据可能会表现得很差。" |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": null, |
| 260 | + "metadata": { |
| 261 | + "collapsed": true |
| 262 | + }, |
| 263 | + "outputs": [], |
| 264 | + "source": [] |
| 265 | + } |
| 266 | + ], |
| 267 | + "metadata": { |
| 268 | + "kernelspec": { |
| 269 | + "display_name": "Python 3", |
| 270 | + "language": "python", |
| 271 | + "name": "python3" |
| 272 | + }, |
| 273 | + "language_info": { |
| 274 | + "codemirror_mode": { |
| 275 | + "name": "ipython", |
| 276 | + "version": 3 |
| 277 | + }, |
| 278 | + "file_extension": ".py", |
| 279 | + "mimetype": "text/x-python", |
| 280 | + "name": "python", |
| 281 | + "nbconvert_exporter": "python", |
| 282 | + "pygments_lexer": "ipython3", |
| 283 | + "version": "3.6.2" |
| 284 | + } |
| 285 | + }, |
| 286 | + "nbformat": 4, |
| 287 | + "nbformat_minor": 2 |
| 288 | +} |
0 commit comments