|
| 1 | +import argparse |
| 2 | +import gym |
| 3 | +import numpy as np |
| 4 | +from itertools import count |
| 5 | +from collections import namedtuple |
| 6 | + |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +import torch.nn.functional as F |
| 10 | +import torch.optim as optim |
| 11 | +import torch.autograd as autograd |
| 12 | +from torch.autograd import Variable |
| 13 | +import torchvision.transforms as T |
| 14 | + |
| 15 | + |
| 16 | +parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') |
| 17 | +parser.add_argument('--gamma', type=int, default=0.99, metavar='G', |
| 18 | + help='discount factor (default: 0.99)') |
| 19 | +parser.add_argument('--seed', type=int, default=543, metavar='N', |
| 20 | + help='random seed (default: 1)') |
| 21 | +parser.add_argument('--render', action='store_true', |
| 22 | + help='render the environment') |
| 23 | +parser.add_argument('--log-interval', type=int, default=10, metavar='N', |
| 24 | + help='interval between training status logs (default: 10)') |
| 25 | +args = parser.parse_args() |
| 26 | + |
| 27 | + |
| 28 | +env = gym.make('CartPole-v0') |
| 29 | +env.seed(args.seed) |
| 30 | +torch.manual_seed(args.seed) |
| 31 | + |
| 32 | + |
| 33 | +class Policy(nn.Module): |
| 34 | + def __init__(self): |
| 35 | + super(Policy, self).__init__() |
| 36 | + self.affine1 = nn.Linear(4, 128) |
| 37 | + self.affine2 = nn.Linear(128, 2) |
| 38 | + |
| 39 | + self.saved_actions = [] |
| 40 | + self.rewards = [] |
| 41 | + |
| 42 | + def forward(self, x): |
| 43 | + x = F.relu(self.affine1(x)) |
| 44 | + action_scores = self.affine2(x) |
| 45 | + return F.softmax(action_scores) |
| 46 | + |
| 47 | + |
| 48 | +model = Policy() |
| 49 | +optimizer = optim.Adam(model.parameters(), lr=1e-2) |
| 50 | + |
| 51 | + |
| 52 | +def select_action(state): |
| 53 | + state = torch.from_numpy(state).float().unsqueeze(0) |
| 54 | + probs = model(Variable(state)) |
| 55 | + action = probs.multinomial() |
| 56 | + model.saved_actions.append(action) |
| 57 | + return action.data |
| 58 | + |
| 59 | + |
| 60 | +def finish_episode(): |
| 61 | + R = 0 |
| 62 | + saved_actions = model.saved_actions |
| 63 | + rewards = [] |
| 64 | + for r in model.rewards[::-1]: |
| 65 | + R = r + args.gamma * R |
| 66 | + rewards.insert(0, R) |
| 67 | + rewards = torch.Tensor(rewards) |
| 68 | + rewards = (rewards - rewards.mean()) / rewards.std() |
| 69 | + for action, r in zip(model.saved_actions, rewards): |
| 70 | + action.reinforce(r) |
| 71 | + optimizer.zero_grad() |
| 72 | + autograd.backward(model.saved_actions, [None for _ in model.saved_actions]) |
| 73 | + optimizer.step() |
| 74 | + del model.rewards[:] |
| 75 | + del model.saved_actions[:] |
| 76 | + |
| 77 | + |
| 78 | +running_reward = 10 |
| 79 | +for i_episode in count(1): |
| 80 | + state = env.reset() |
| 81 | + for t in range(10000): # Don't infinite loop while learning |
| 82 | + action = select_action(state) |
| 83 | + state, reward, done, _ = env.step(action[0,0]) |
| 84 | + if args.render: |
| 85 | + env.render() |
| 86 | + model.rewards.append(reward) |
| 87 | + if done: |
| 88 | + break |
| 89 | + |
| 90 | + running_reward = running_reward * 0.99 + t * 0.01 |
| 91 | + finish_episode() |
| 92 | + if i_episode % args.log_interval == 0: |
| 93 | + print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format( |
| 94 | + i_episode, t, running_reward)) |
| 95 | + if running_reward > 200: |
| 96 | + print("Solved! Running reward is now {} and " |
| 97 | + "the last episode runs to {} time steps!".format(running_reward, t)) |
| 98 | + break |
0 commit comments