-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathtensorboard.py
222 lines (175 loc) · 7.24 KB
/
tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
from __future__ import annotations
import atexit
import logging
from typing import Any, Dict, List, Mapping, Optional, Union
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from torchtnt.utils.distributed import get_global_rank, PGWrapper
from torchtnt.utils.loggers.logger import MetricLogger, Scalar
logger: logging.Logger = logging.getLogger(__name__)
class TensorBoardLogger(MetricLogger):
"""
Simple logger for TensorBoard.
On construction, the logger creates a new events file that logs
will be written to. If the environment variable `RANK` is defined,
logger will only log if RANK = 0.
Note:
If using this logger with distributed training:
- This logger should be constructed on all ranks
- This logger can call collective operations
- Logs will be written on rank 0 only
- Logger must be constructed synchronously *after* initializing the distributed process group.
Args:
path (str): path to write logs to
*args: Extra positional arguments to pass to SummaryWriter
**kwargs: Extra keyword arguments to pass to SummaryWriter
Examples::
from torchtnt.utils.loggers import TensorBoardLogger
logger = TensorBoardLogger(path="tmp/tb_logs")
logger.log("accuracy", 23.56, 10)
logger.close()
"""
def __init__(self: TensorBoardLogger, path: str, *args: Any, **kwargs: Any) -> None:
self._writer: Optional[SummaryWriter] = None
self._path: str = path
self._rank: int = get_global_rank()
if self._rank == 0:
logger.info(
f"TensorBoard SummaryWriter instantiated. Files will be stored in: {path}"
)
self._writer = SummaryWriter(log_dir=path, *args, **kwargs)
else:
logger.debug(
f"Not logging metrics on this host because env RANK: {self._rank} != 0"
)
atexit.register(self.close)
@property
def writer(self: TensorBoardLogger) -> Optional[SummaryWriter]:
return self._writer
@property
def path(self: TensorBoardLogger) -> str:
return self._path
def log_dict(
self: TensorBoardLogger, payload: Mapping[str, Scalar], step: int
) -> None:
"""Add multiple scalar values to TensorBoard.
Args:
payload (dict): dictionary of tag name and scalar value
step (int): step value to record
"""
if self._writer:
for k, v in payload.items():
self.log(k, v, step)
def log(self: TensorBoardLogger, name: str, data: Scalar, step: int) -> None:
"""Add scalar data to TensorBoard.
Args:
name (string): tag name used to group scalars
data (float/int/Tensor): scalar data to log
step (int): step value to record
"""
if self._writer:
self._writer.add_scalar(name, data, global_step=step, new_style=True)
def log_text(self: TensorBoardLogger, name: str, data: str, step: int) -> None:
"""Add text data to summary.
Args:
name (string): tag name used to identify data
data (string): string to save
step (int): step value to record
"""
if self._writer:
self._writer.add_text(name, data, global_step=step)
def log_hparams(
self: TensorBoardLogger, hparams: Dict[str, Scalar], metrics: Dict[str, Scalar]
) -> None:
"""Add hyperparameter data to TensorBoard.
Args:
hparams (dict): dictionary of hyperparameter names and corresponding values
metrics (dict): dictionary of name of metric and corresponding values
"""
if self._writer:
self._writer.add_hparams(hparams, metrics)
def log_image(self: TensorBoardLogger, *args: Any, **kwargs: Any) -> None:
"""Add image data to TensorBoard.
Args:
*args (Any): Positional arguments passed to SummaryWriter.add_image
**kwargs(Any): Keyword arguments passed to SummaryWriter.add_image
"""
writer = self._writer
if writer:
writer.add_image(*args, **kwargs)
def log_images(self: TensorBoardLogger, *args: Any, **kwargs: Any) -> None:
"""Add batched image data to summary.
Args:
*args (Any): Positional arguments passed to SummaryWriter.add_images
**kwargs(Any): Keyword arguments passed to SummaryWriter.add_images
"""
writer = self._writer
if writer:
writer.add_images(*args, **kwargs)
def log_figure(self: TensorBoardLogger, *args: Any, **kwargs: Any) -> None:
"""Add matplotlib figure to TensorBoard.
Args:
*args (Any): Positional arguments passed to SummaryWriter.add_figure
**kwargs(Any): Keyword arguments passed to SummaryWriter.add_figure
"""
writer = self._writer
if writer:
writer.add_figure(*args, **kwargs)
def log_audio(self: TensorBoardLogger, *args: Any, **kwargs: Any) -> None:
"""Add audio data to TensorBoard.
Args:
*args (Any): Positional arguments passed to SummaryWriter.add_audio
**kwargs (Any): Keyword arguments passed to SummaryWriter.add_audio
"""
writer = self._writer
if writer:
writer.add_audio(*args, **kwargs)
def log_scalars(
self: TensorBoardLogger,
main_tag: str,
tag_scalar_dict: Dict[str, Union[float, int]],
global_step: Optional[int] = None,
walltime: Optional[float] = None,
) -> None:
"""Log multiple values to TensorBoard.
Args:
main_tag (string): Parent name for the tags
tag_scalar_dict (dict): dictionary of tag name and scalar value
global_step (int): global step value to record
walltime (float): Optional override default walltime (time.time())
Returns:
None
"""
if self._writer:
self._writer.add_scalars(
main_tag=main_tag,
tag_scalar_dict=tag_scalar_dict,
global_step=global_step,
walltime=walltime,
)
def log_histogram(self: TensorBoardLogger, *args: Any, **kwargs: Any) -> None:
"""Add histogram to TensorBoard.
Args:
*args (Any): Positional arguments passed to SummaryWriter.add_histogram
**kwargs(Any): Keyword arguments passed to SummaryWriter.add_histogram
"""
if self._writer:
self._writer.add_histogram(*args, **kwargs)
def flush(self: TensorBoardLogger) -> None:
"""Writes pending logs to disk."""
if self._writer:
self._writer.flush()
def close(self: TensorBoardLogger) -> None:
"""Close writer, flushing pending logs to disk.
Logs cannot be written after `close` is called.
"""
if self._writer:
self._writer.close()
self._writer = None