|
| 1 | +import argparse |
| 2 | +from typing import List |
| 3 | + |
| 4 | + |
| 5 | +def parse_args(argv: List[str]) -> argparse.Namespace: |
| 6 | + parser = argparse.ArgumentParser(description="torchrec dlrm example trainer") |
| 7 | + |
| 8 | + # Dataset related arguments |
| 9 | + parser.add_argument( |
| 10 | + "--dataset_name", |
| 11 | + type=str, |
| 12 | + choices=["movielens_1m", "criteo_kaggle"], |
| 13 | + default="movielens_1m", |
| 14 | + help="dataset for experiment, current support criteo_1tb, criteo_kaggle", |
| 15 | + ) |
| 16 | + |
| 17 | + # Model related arguments |
| 18 | + parser.add_argument( |
| 19 | + "--model_name", |
| 20 | + type=str, |
| 21 | + choices=["dlrmv2", "dlrmv3"], |
| 22 | + default="dlrmv3", |
| 23 | + help="model for experiment, current support dlrmv2, dlrmv3. Dlrmv3 is the default", |
| 24 | + ) |
| 25 | + parser.add_argument( |
| 26 | + "--num_embeddings", # ratio of feature ids to embedding table size # 3 axis: x-bath_idx; y-collisions; zembedding table sizes |
| 27 | + type=int, |
| 28 | + default=100_000, |
| 29 | + help="max_ind_size. The number of embeddings in each embedding table. Defaults" |
| 30 | + " to 100_000 if num_embeddings_per_feature is not supplied.", |
| 31 | + ) |
| 32 | + parser.add_argument( |
| 33 | + "--embedding_dim", |
| 34 | + type=int, |
| 35 | + default=64, |
| 36 | + help="Size of each embedding.", |
| 37 | + ) |
| 38 | + parser.add_argument( |
| 39 | + "--seed", |
| 40 | + type=int, |
| 41 | + help="Random seed for reproducibility.", |
| 42 | + default=0, |
| 43 | + ) |
| 44 | + |
| 45 | + # Training related arguments |
| 46 | + parser.add_argument( |
| 47 | + "--epochs", |
| 48 | + type=int, |
| 49 | + default=1, |
| 50 | + help="number of epochs to train", |
| 51 | + ) |
| 52 | + parser.add_argument( |
| 53 | + "--batch_size", |
| 54 | + type=int, |
| 55 | + default=4096, |
| 56 | + help="batch size to use for training", |
| 57 | + ) |
| 58 | + parser.add_argument( |
| 59 | + "--sparse_optim", |
| 60 | + type=str, |
| 61 | + default="adagrad", |
| 62 | + help="The optimizer to use for sparse parameters.", |
| 63 | + ) |
| 64 | + parser.add_argument( |
| 65 | + "--dense_optim", |
| 66 | + type=str, |
| 67 | + default="adagrad", |
| 68 | + help="The optimizer to use for sparse parameters.", |
| 69 | + ) |
| 70 | + parser.add_argument( |
| 71 | + "--learning_rate", |
| 72 | + type=float, |
| 73 | + default=1.0, |
| 74 | + help="Learning rate.", |
| 75 | + ) |
| 76 | + parser.add_argument( |
| 77 | + "--eps", |
| 78 | + type=float, |
| 79 | + default=1e-8, |
| 80 | + help="Epsilon for Adagrad optimizer.", |
| 81 | + ) |
| 82 | + parser.add_argument( |
| 83 | + "--shuffle_batches", |
| 84 | + dest="shuffle_batches", |
| 85 | + action="store_true", |
| 86 | + help="Shuffle each batch during training.", |
| 87 | + ) |
| 88 | + parser.add_argument( |
| 89 | + "--validation_freq_within_epoch", |
| 90 | + type=int, |
| 91 | + default=None, |
| 92 | + help="Frequency at which validation will be run within an epoch.", |
| 93 | + ) |
| 94 | + parser.set_defaults( |
| 95 | + pin_memory=None, |
| 96 | + mmap_mode=None, |
| 97 | + drop_last=None, |
| 98 | + shuffle_batches=None, |
| 99 | + shuffle_training_set=None, |
| 100 | + ) |
| 101 | + parser.add_argument( |
| 102 | + "--input_hash_size", |
| 103 | + type=int, |
| 104 | + default=100_000, |
| 105 | + help="Input feature value range", |
| 106 | + ) |
| 107 | + parser.add_argument( |
| 108 | + "--profiling_result_folder", |
| 109 | + type=str, |
| 110 | + default="profiling_result", |
| 111 | + help="Folder to save profiling results", |
| 112 | + ) |
| 113 | + parser.add_argument( |
| 114 | + "--zch_method", |
| 115 | + type=str, |
| 116 | + help="The method to use for zero collision hashing, blank for no zch", |
| 117 | + default="", |
| 118 | + ) |
| 119 | + parser.add_argument( |
| 120 | + "--num_buckets", |
| 121 | + type=int, |
| 122 | + default=4, |
| 123 | + help="Number of buckets for identity table. Only used for MPZCH. The number of ranks WORLD_SIZE must be a factor of num_buckets, and the number of buckets must be a factor of input_hash_size", |
| 124 | + ) |
| 125 | + return parser.parse_args(argv) |
0 commit comments