Skip to content

Implement diag for DiagonalCoulombHamiltonian from scratch #490

@kevinsung

Description

@kevinsung

def _diag_(self, norb: int, nelec: int | tuple[int, int]) -> np.ndarray:
"""Return the diagonal entries of the Hamiltonian."""
assert isinstance(nelec, tuple)
if not np.all(np.isreal(self.one_body_tensor)):
raise NotImplementedError(
"Computing diagonal of complex diagonal Coulomb Hamiltonian is not yet "
"supported."
)
one_body_tensor = self.one_body_tensor.real.copy()
two_body_tensor_aa = np.zeros((self.norb, self.norb, self.norb, self.norb))
two_body_tensor_ab = np.zeros((self.norb, self.norb, self.norb, self.norb))
diag_coulomb_mat_aa, diag_coulomb_mat_ab = self.diag_coulomb_mats
for p, q in itertools.product(range(self.norb), repeat=2):
two_body_tensor_aa[p, p, q, q] = diag_coulomb_mat_aa[p, q]
two_body_tensor_ab[p, p, q, q] = diag_coulomb_mat_ab[p, q]
one_body_tensor += 0.5 * np.einsum("prqr", two_body_tensor_aa)
h1e = (one_body_tensor, one_body_tensor)
h2e = (two_body_tensor_aa, two_body_tensor_ab, two_body_tensor_aa)
return make_hdiag(h1e, h2e, norb=norb, nelec=nelec) + self.constant

This function currently uses PySCF but it's naive and can be done more efficiently.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions