Skip to content

Commit 43b6582

Browse files
committed
update
git-svn-id: svn://svn.r-forge.r-project.org/svnroot/ctm@2506 edb9625f-4e0d-4859-8d74-9fd3b1da38cb
1 parent 34d5b26 commit 43b6582

File tree

3 files changed

+51
-14
lines changed

3 files changed

+51
-14
lines changed

www/images/BHplot-1.png

30 Bytes
Loading

www/research/index.html

Lines changed: 38 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -267,6 +267,10 @@ <h1 id="scholarly-papers-describing-the-methodology">Scholarly papers describing
267267
understood as univariate transformation models and their joint distribution
268268
is characterised by a (gaussian) copula, are described in <a id="cite-Klein_Hothorn_Barbanti_2020"></a><a href="https://doi.org/10.1111/sjos.12501">Klein, Hothorn, Barbanti, and Kneib (2022)</a>.</p>
269269

270+
<p>Applications of transformation models to diagnostic testing <a id="cite-Sewak_Hothorn_2023"></a>(<a href="https://doi.org/10.1177/09622802231176030">Sewak and Hothorn, 2023</a>), location-scale regression <a id="cite-Siegfried_Kook_Hothorn_2023"></a>(<a href="https://doi.org/10.1080/00031305.2023.2203177">Siegfried, Kook, and Hothorn, 2023</a>)
271+
or to mixed models <a id="cite-Tamasi_Hothorn_2021"></a><a id="cite-Tamasi_Crowther_Puhan_2022"></a>(<a href="https://doi.org/10.32614/RJ-2021-075">Tamási and Hothorn, 2021</a>; <a href="https://doi.org/10.1093/biostatistics/kxab045">Tamási, Crowther, Puhan, Steyerberg, and Hothorn, 2022</a>) and transformation models for correlated observations
272+
<a id="cite-Barbanti_Hothorn_2023"></a>(<a href="https://doi.org/10.1093/biostatistics/kxac048">Barbanti and Hothorn, 2024</a>) have been published in addition.</p>
273+
270274
<p><strong>References</strong></p>
271275

272276
<p><a id="bib-Hothorn_Kneib_Buehlmann_2014"></a><a href="#cite-Hothorn_Kneib_Buehlmann_2014">[1]</a><cite>
@@ -318,12 +322,45 @@ <h1 id="scholarly-papers-describing-the-methodology">Scholarly papers describing
318322
In: <em>Journal of Computational and Graphical Statistics</em> 14 (2021), pp. 144&ndash;148.
319323
DOI: <a href="https://doi.org/10.1080/10618600.2021.1872581">10.1080/10618600.2021.1872581</a>.</cite></p>
320324

321-
<p><a id="bib-Klein_Hothorn_Barbanti_2020"></a><a href="#cite-Klein_Hothorn_Barbanti_2020">[9]</a><cite>
325+
<p><a id="bib-Tamasi_Hothorn_2021"></a><a href="#cite-Tamasi_Hothorn_2021">[9]</a><cite>
326+
B. Tamási and T. Hothorn.
327+
&ldquo;tramME: Mixed-Effects Transformation Models Using
328+
Template Model Builder&rdquo;.
329+
In: <em>The R Journal</em> 13.2 (2021), pp. 398&ndash;418.
330+
DOI: <a href="https://doi.org/10.32614/RJ-2021-075">10.32614/RJ-2021-075</a>.</cite></p>
331+
332+
<p><a id="bib-Klein_Hothorn_Barbanti_2020"></a><a href="#cite-Klein_Hothorn_Barbanti_2020">[10]</a><cite>
322333
N. Klein, T. Hothorn, L. Barbanti, and T. Kneib.
323334
&ldquo;Multivariate Conditional Transformation Models&rdquo;.
324335
In: <em>Scandinavian Journal of Statistics</em> 49 (2022), pp. 116&ndash;142.
325336
DOI: <a href="https://doi.org/10.1111/sjos.12501">10.1111/sjos.12501</a>.</cite></p>
326337

338+
<p><a id="bib-Tamasi_Crowther_Puhan_2022"></a><a href="#cite-Tamasi_Crowther_Puhan_2022">[11]</a><cite>
339+
B. Tamási, M. Crowther, M. A. Puhan, E. Steyerberg, and T. Hothorn.
340+
&ldquo;Individual Participant Data Meta-analysis with
341+
Mixed-effects Transformation Models&rdquo;.
342+
In: <em>Biostatistics</em> 23.4 (2022), pp. 1083&ndash;1098.
343+
DOI: <a href="https://doi.org/10.1093/biostatistics/kxab045">10.1093/biostatistics/kxab045</a>.</cite></p>
344+
345+
<p><a id="bib-Sewak_Hothorn_2023"></a><a href="#cite-Sewak_Hothorn_2023">[12]</a><cite>
346+
A. Sewak and T. Hothorn.
347+
&ldquo;Estimating Transformations for Evaluating
348+
Diagnostic Tests with Covariate Adjustment&rdquo;.
349+
In: <em>Statistical Methods in Medical Research</em> 32.7 (2023), pp. 1403&ndash;1419.
350+
DOI: <a href="https://doi.org/10.1177/09622802231176030">10.1177/09622802231176030</a>.</cite></p>
351+
352+
<p><a id="bib-Siegfried_Kook_Hothorn_2023"></a><a href="#cite-Siegfried_Kook_Hothorn_2023">[13]</a><cite>
353+
S. Siegfried, L. Kook, and T. Hothorn.
354+
&ldquo;Distribution-Free Location-Scale Regression&rdquo;.
355+
In: <em>The American Statistician</em> 77.4 (2023), pp. 345&ndash;356.
356+
DOI: <a href="https://doi.org/10.1080/00031305.2023.2203177">10.1080/00031305.2023.2203177</a>.</cite></p>
357+
358+
<p><a id="bib-Barbanti_Hothorn_2023"></a><a href="#cite-Barbanti_Hothorn_2023">[14]</a><cite>
359+
L. Barbanti and T. Hothorn.
360+
&ldquo;A Transformation Perspective on Marginal and Conditional Models&rdquo;.
361+
In: <em>Biostatistics</em> 25.2 (2024), pp. 402&ndash;428.
362+
DOI: <a href="https://doi.org/10.1093/biostatistics/kxac048">10.1093/biostatistics/kxac048</a>.</cite></p>
363+
327364

328365
</div>
329366

www/software/index.html

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -281,24 +281,24 @@ <h1 id="a-simple-transformation-model">A Simple Transformation Model</h1>
281281
##
282282
## Coefficients:
283283
## Estimate Std. Error z value Pr(&gt;|z|)
284-
## crim 0.082651 0.013712 6.028 1.66e-09 ***
285-
## zn -0.010278 0.004923 -2.088 0.0368 *
286-
## indus -0.025199 0.021449 -1.175 0.2400
287-
## nox 7.064875 1.491338 4.737 2.17e-06 ***
288-
## rm -1.534745 0.218977 -7.009 2.41e-12 ***
289-
## age 0.008433 0.005118 1.648 0.0994 .
290-
## dis 0.496536 0.077791 6.383 1.74e-10 ***
291-
## rad -0.120767 0.024924 -4.845 1.26e-06 ***
292-
## tax 0.006482 0.001334 4.861 1.17e-06 ***
293-
## ptratio 0.395812 0.048312 8.193 2.22e-16 ***
294-
## b -0.006451 0.001112 -5.803 6.52e-09 ***
295-
## lstat 0.281504 0.026502 10.622 &lt; 2e-16 ***
284+
## crim 0.082653 0.013711 6.028 1.66e-09 ***
285+
## zn -0.010294 0.004923 -2.091 0.0365 *
286+
## indus -0.025192 0.021449 -1.175 0.2402
287+
## nox 7.066574 1.491329 4.738 2.15e-06 ***
288+
## rm -1.534753 0.218987 -7.008 2.41e-12 ***
289+
## age 0.008425 0.005118 1.646 0.0997 .
290+
## dis 0.496597 0.077793 6.384 1.73e-10 ***
291+
## rad -0.120737 0.024923 -4.844 1.27e-06 ***
292+
## tax 0.006483 0.001334 4.861 1.17e-06 ***
293+
## ptratio 0.395890 0.048313 8.194 2.22e-16 ***
294+
## b -0.006451 0.001112 -5.802 6.53e-09 ***
295+
## lstat 0.281496 0.026501 10.622 &lt; 2e-16 ***
296296
## ---
297297
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
298298
##
299299
## Log-Likelihood:
300300
## -1297.487 (df = 26)
301-
## Likelihood-ratio Test: Chisq = 879.7666 on 12 degrees of freedom; p = &lt; 2.2e-16
301+
## Likelihood-ratio Test: Chisq = 879.7665 on 12 degrees of freedom; p = &lt; 2.2e-16
302302
</code></pre></div></div>
303303
<p>Two separate transformation function are fitted (for houses near and off
304304
Charles river, variable chas). The remaining variables enter a linear

0 commit comments

Comments
 (0)