@@ -135,13 +172,17 @@ cd build/bin
Hi! I'm DeepSeek-R1, an artificial intelligence assistant created by DeepSeek. I'm at your service and would be delighted to assist you with any inquiries or tasks you may have.
```
-### GGUF Benchmark Test
+### Benchmark the model
+
+
```bash
./llama-bench -m DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf
```
-```bash
+
+
+```txt
radxa@orion-o6:~/llama.cpp/build/bin$ ./llama-bench -m ~/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf -t 8
| model | size | params | backend | threads | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
@@ -151,4 +192,4 @@ radxa@orion-o6:~/llama.cpp/build/bin$ ./llama-bench -m ~/DeepSeek-R1-Distill-Qwe
## References
-For more details on llama.cpp, please refer to the [official documentation](https://github.com/ggml-org/llama.cpp).
+For more details about llama.cpp, refer to the [official documentation](https://github.com/ggml-org/llama.cpp).
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/ai/_ollama.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/ai/_ollama.mdx
index 7ccac7592..d43bc9a34 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/ai/_ollama.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/ai/_ollama.mdx
@@ -1,27 +1,27 @@
-Ollama is a tool for running and managing large language models (LLMs) locally.
-It allows you to easily pull, run, and manage various AI models such as LLaMA, Mistral, and Gemma on your local device without complex environment configurations.
+Ollama is an efficient tool for managing and running local large language models (LLMs).
+It greatly simplifies AI model deployment. With minimal environment setup, you can pull, run, and manage models on your local device.
-## Ollama Installation
+## Install Ollama
```bash
curl -fsSL https://ollama.com/install.sh | sh
```
-For local build methods, please refer to the [official documentation](https://github.com/ollama/ollama/blob/main/docs/development.md).
+For building from source locally, refer to the [official documentation](https://github.com/ollama/ollama/blob/main/docs/development.md).
## Usage
-### Pull a Model
+### Pull a model
-This command downloads the model files from the internet.
+This command downloads the model files from the Internet.
```bash
ollama pull deepseek-r1:1.5b
```
-### Run a Model
+### Run a model
-This command runs the model directly. If the model is not cached locally, it will be downloaded automatically before running.
+This command starts the model. If it is not cached locally, Ollama will download it automatically and then run it.
```bash
ollama run deepseek-r1:1.5b
@@ -33,19 +33,19 @@ ollama run deepseek-r1:1.5b
ollama show deepseek-r1:1.5b
```
-### List models on your computer
+### List downloaded models
```bash
ollama list
```
-### List which models are currently loaded
+### List loaded models
```bash
ollama ps
```
-### Stop a model which is currently running
+### Stop a running model
```bash
ollama stop deepseek-r1:1.5b
@@ -57,6 +57,6 @@ ollama stop deepseek-r1:1.5b
ollama rm deepseek-r1:1.5b
```
-## Reference Information
+## References
-For more detailed information about Ollama, please refer to the [official documentation](https://github.com/ollama/ollama).
+For more details about Ollama, refer to the [official documentation](https://github.com/ollama/ollama).
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/accessory-use/_heatsink-8240b.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/accessory-use/_heatsink-8240b.mdx
index 7a643b400..93debc922 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/accessory-use/_heatsink-8240b.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/accessory-use/_heatsink-8240b.mdx
@@ -2,9 +2,9 @@ This guide explains how to install and remove the Radxa 8420B active cooling sys
:::tip
-This tutorial is applicable to Radxa O6 / O6N. The installation and removal procedures are essentially the same for both models, with the exception that the Radxa O6 requires the additional step of removing an acrylic case.
+This tutorial is applicable to Radxa Orion O6 / O6N. The installation and removal procedures are essentially the same for both models, with the exception that the Radxa Orion O6 requires the additional step of removing an acrylic case.
-For Radxa O6N, you can follow the installation and removal instructions after removing the acrylic case.
+For Radxa Orion O6N, you can follow the installation and removal instructions after removing the acrylic case.
:::
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_API-manual.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_API-manual.mdx
new file mode 100644
index 000000000..b0897eab7
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_API-manual.mdx
@@ -0,0 +1,5 @@
+The NPU driver exposes APIs to upper-layer applications in two parts: C++ and Python.
+
+The detailed API manual can be downloaded from the [CIX Developer Center](https://developer.cixtech.com/).
+
+Scroll down to find the documentation resources, then click Download under the AI section.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_BEV_RoadSeg.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_BEV_RoadSeg.mdx
new file mode 100644
index 000000000..fd07f4675
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_BEV_RoadSeg.mdx
@@ -0,0 +1,4 @@
+BEV_RoadSeg is a specialized system focused on drivable-area perception for autonomous driving. It combines bird’s-eye-view (BEV) transformation with a Transformer-based architecture, and uses the LSTR deep learning model to segment road structures accurately, enabling stable and reliable detection of lanes and drivable regions in complex, dynamic driving environments.
+
+- Core capability: Generates high-precision BEV segmentation maps of drivable areas and lane lines from multi-camera surround-view inputs, providing key perception signals for path planning.
+- Technical highlights: Uses the LSTR model as the core and leverages the Transformer’s strong ability to model long-range spatial relationships, effectively handling challenging scenarios such as curves, intersections, and partial occlusions.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ai-hub.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ai-hub.mdx
index 9321198c8..38e536ae6 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ai-hub.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ai-hub.mdx
@@ -1,16 +1,47 @@
-The CIX AI Model Hub is a collection of machine learning models optimized for deployment on CIX SOC. It includes AI model examples across various domains (such as computer vision, speech recognition, generative AI, and other open-source models) along with configuration files compiled for the CIX SOC NPU. This document primarily introduces how to download and run models from the AI Model Hub.
+The CIX AI Model Hub repository is hosted on ModelScope. Visit: [cix ai_model_hub](https://modelscope.cn/models/cix/ai_model_hub_25_Q3)
-## Download CIX AI Model Hub Repository
+## Clone the repository
-The CIX AI Model Hub repository is hosted on the ModelScope community platform. Access it at [cix ai_model_hub](https://modelscope.cn/models/cix/ai_model_hub_25_Q3).
+With the following command, you can clone only the files that are not tracked by Git LFS (make sure Git LFS is installed):
-You can download it using git (ensure git-lfs is installed):
+:::info
+After cloning the directory structure on the device, decide whether you also need to clone on the host depending on whether you plan to convert models on the host.
+:::
```bash
+GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/cix/ai_model_hub_25_Q3.git
+```
+
+## Set up the environment on the device
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 -m venv --system-site-packages .venv
+pip3 install -r requirements.txt
+```
+
+
+
+## Download the entire repository
+
+:::tip Recommendation
+Since the repository is large, it is recommended to avoid cloning everything.
+:::
+
+Download with Git (make sure Git LFS is installed):
+
+```bash
+mkdir ai-model-hub && cd ai-model-hub
+git lfs install
git clone https://www.modelscope.cn/cix/ai_model_hub_25_Q3.git
```
-Model example directory structure:
+Directory structure:
```bash
.
@@ -68,49 +99,3 @@ Model example directory structure:
├── text_process.py
└── tools.py
```
-
-## Running Models
-
-### Configuring the Environment
-
-Navigate to the model directory:
-
-```bash
-cd ai_model_hub_25_Q3
-```
-
-Create a Python virtual environment:
-
-```bash
-python3 -m venv venv
-```
-
-Activate the virtual environment:
-
-```bash
-source venv/bin/activate
-```
-
-Install the Python environment:
-
-```bash
-pip3 install -r requirements.txt
-```
-
-### Model Examples
-
-1. Preprocess human-readable input into model input.
-2. Run model inference.
-3. Postprocess model output into a human-readable format.
-
-All model example codes can run end-to-end on the NPU of the O6/O6N:
-
-```bash
-python3 inference_npu.py
-```
-
-Additionally, you can run the end-to-end examples locally on an X86 host or on the O6/O6N using CPU with OnnxRuntime:
-
-```bash
-python3 inference_onnx.py
-```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_clip.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_clip.mdx
new file mode 100644
index 000000000..4bbd51480
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_clip.mdx
@@ -0,0 +1,228 @@
+**CLIP** is a general-purpose multimodal pre-trained model developed by OpenAI. By performing contrastive learning on hundreds of millions of image-text pairs collected from the Internet, it breaks away from the limitations of traditional vision models that rely on manually labeled categories, enabling AI to “understand” the visual world directly through natural language.
+
+- Key features: Strong cross-modal alignment and zero-shot transfer capability. It can recognize object categories it has never seen without task-specific fine-tuning. It is widely used for semantic image-text retrieval, automatic prompt generation, and as the core text encoder for generative AI such as Stable Diffusion.
+- Version notes: This example uses the CLIP-ViT-B/32 model. As a baseline that balances performance and deployment efficiency, it uses a Vision Transformer (ViT) as the visual backbone and processes image features with 32x32 patches. While maintaining strong semantic alignment accuracy, it has a smaller parameter size and faster inference, making it a common balanced choice for real-world multimodal applications.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Generative_AI/Image_to_Text/onnx_clip
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Image_to_Text/onnx_clip/clip_txt.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Image_to_Text/onnx_clip/clip_visual.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Generative_AI/Image_to_Text/onnx_clip/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Image_to_Text/onnx_clip/model/clip_text_model_vitb32.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Image_to_Text/onnx_clip/model/clip_visual.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── clip_visual.cix
+├── clip_txt.cix
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+└── test_data
+```
+
+### Quantize and convert the model
+
+#### Convert the image module
+
+
+
+```bash
+cd ..
+cixbuild cfg/clip_visualbuild.cfg
+```
+
+
+
+#### Convert the text module
+
+
+
+```bash
+cixbuild cfg/clip_text_model_vitb32build.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py
+[[0.03632354 0.96057177 0.00310465]]
+test_data/000000464522.jpg, max similarity: a dog
+[[0.03074941 0.00429748 0.9649532 ]]
+test_data/000000032811.jpg, max similarity: a bird
+[[0.8280978 0.08798673 0.08391542]]
+test_data/000000010698.jpg, max similarity: a person
+```
+
+
+
+#### Test images
+
+
+
+{" "}
+
+
+
+

+
+
+

+
+
+
+{" "}
+
+
+

+
+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Runtime output
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+[[0.09763492 0.00929287 0.89307225]]
+test_data/000000032811.jpg, max similarity: a bird
+[[0.02777621 0.9682566 0.00396715]]
+test_data/000000464522.jpg, max similarity: a dog
+[[0.8495277 0.08247717 0.06799505]]
+test_data/000000010698.jpg, max similarity: a person
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+#### Test images
+
+**Same as above.**
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab-v3.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab-v3.mdx
new file mode 100644
index 000000000..cf2886e2b
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab-v3.mdx
@@ -0,0 +1,150 @@
+**DeepLabV3** is a classic semantic segmentation model proposed by Google. By extensively exploring atrous convolution, it enlarges the receptive field without increasing the parameter count, effectively addressing the loss of spatial information when segmenting multi-scale objects in deep neural networks.
+
+- Key features: Excellent at capturing complex and fine-grained edges in images, with strong multi-scale perception. It enables pixel-level accurate class assignment and is widely used in medical imaging analysis, autonomous-driving perception, and satellite image processing.
+- Version notes: This example uses the DeepLabV3 architecture. As a benchmark model in semantic segmentation, it improves recognition accuracy for objects of different sizes using an enhanced ASPP module and global average pooling. While maintaining deep feature extraction, it reconstructs spatial structures through a well-designed architecture, making it a mature and well-balanced choice for industrial use.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3/deeplab_v3.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3/model/deeplabv3_resnet50.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── deeplab_v3.cix
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── test_data
+└── Tutorials.ipynb
+```
+
+### Quantize and convert the model
+
+
+
+```bash
+cd ..
+cixbuild cfg/onnx_deeplab_v3_build.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py --image_path test_data --onnx_path model/deeplabv3_resnet50.onnx
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py --image_path test_data --onnx_path model/deeplabv3_resnet50.onnx
+save output: onnx_ILSVRC2012_val_00004704.JPEG
+```
+
+
+
+
+
+{" "}
+
+

+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py --image_path test_data --model_path deeplab_v3.cix
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py --image_path test_data --model_path deeplab_v3.cix
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+save output: npu_ILSVRC2012_val_00004704.JPEG
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+
+{" "}
+
+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab_v3.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab_v3.mdx
deleted file mode 100644
index 861c8300d..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_deeplab_v3.mdx
+++ /dev/null
@@ -1,218 +0,0 @@
-This document explains how to use the CIX P1 NPU SDK to convert [DeepLabv3](https://pytorch.org/vision/main/models/generated/torchvision.models.segmentation.deeplabv3_resnet50.html) into a model that can run on CIX SOC NPU.
-
-The overall process consists of four steps:
-:::tip
-Steps 1-3 should be executed in a Linux environment on an x86 host
-:::
-
-1. Download the NPU SDK and install NOE Compiler
-2. Download model files (code and scripts)
-3. Compile the model
-4. Deploy the model to Orion O6 / O6N
-
-## Download NPU SDK and Install NOE Compiler
-
-Please refer to [Install NPU SDK](./npu-introduction) for NPU SDK and NOE Compiler installation.
-
-## Download Model Files
-
-The CIX AI Model Hub contains all necessary files for DeepLabv3. Please download them according to the [CIX AI Model Hub](./ai-hub) instructions.
-
-```bash
-cd ai_model_hub/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3
-```
-
-Please verify that the directory structure matches the following:
-
-```bash
-.
-├── cfg
-│ └── onnx_deeplab_v3_build.cfg
-├── datasets
-│ └── calibration_data.npy
-├── graph.json
-├── inference_npu.py
-├── inference_onnx.py
-├── ReadMe.md
-├── test_data
-│ └── ILSVRC2012_val_00004704.JPEG
-└── Tutorials.ipynb
-```
-
-## Compile the Model
-
-:::tip
-You don't need to compile the model from scratch. Radxa provides a pre-compiled deeplab_v3.cix model (downloadable using the command below). If you use the pre-compiled model, you can skip the "Compile the Model" step.
-
-```bash
-wget https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3/deeplab_v3.cix
-```
-
-:::
-
-### Prepare ONNX Model
-
-- Download ONNX Model
-
- [deeplabv3_resnet50.onnx](https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3/model/deeplabv3_resnet50.onnx)
-
-- Simplify the Model
-
- Use onnxsim for model input shape fixing and model simplification
-
- ```bash
- pip3 install onnxsim onnxruntime
- onnxsim deeplabv3_resnet50.onnx deeplabv3_resnet50-sim.onnx --overwrite-input-shape 1,3,520,520
- ```
-
-### Compile the Model
-
-CIX SOC NPU supports INT8 computation. Before compiling the model, we need to quantize the model to INT8 using NOE Compiler.
-
-- Prepare Calibration Dataset
-
- - Use the existing calibration dataset in `datasets`
-
- ```bash
- .
- └── calibration_data.npy
- ```
-
- - Or prepare your own calibration dataset
-
- The `test_data` directory already contains multiple image files for calibration
-
- ```bash
- .
- ├── 1.jpeg
- └── 2.jpeg
- ```
-
- Use the following script to generate the calibration file
-
- ```python
- import sys
- import os
- import numpy as np
- _abs_path = os.path.join(os.getcwd(), "../../../../")
- sys.path.append(_abs_path)
- from utils.image_process import preprocess_image_deeplabv3
- from utils.tools import get_file_list
- # Get a list of images from the provided path
- images_path = "test_data"
- images_list = get_file_list(images_path)
- data = []
- for image_path in images_list:
- input = preprocess_image_deeplabv3(image_path)
- data.append(input)
- # concat the data and save calib dataset
- data = np.concatenate(data, axis=0)
- np.save("datasets/calib_data_tmp.npy", data)
- print("Generate calib dataset success.")
- ```
-
-- Quantize and Compile the Model with NOE Compiler
-
- - Create a configuration file for quantization and compilation. Refer to the following configuration:
-
- ```bash
- [Common]
- mode = build
-
- [Parser]
- model_type = onnx
- model_name = deeplab_v3
- detection_postprocess =
- model_domain = image_segmentation
- input_model = ./deeplabv3_resnet50-sim.onnx
- input = input
- input_shape = [1, 3, 520, 520]
- output = output
- output_dir = ./
-
- [Optimizer]
- output_dir = ./
- calibration_data = ./datasets/calib_data_tmp.npy
- calibration_batch_size = 1
- metric_batch_size = 1
- dataset = NumpyDataset
- quantize_method_for_weight = per_channel_symmetric_restricted_range
- quantize_method_for_activation = per_tensor_asymmetric
- save_statistic_info = True
-
- [GBuilder]
- outputs = deeplab_v3.cix
- target = X2_1204MP3
- profile = True
- tiling = fps
- ```
-
- - Compile the Model
- :::tip
- If you encounter the cixbuild error: `[E] Optimizing model failed! CUDA error: no kernel image is available for execution on the device ...`
- This means the current version of PyTorch doesn't support your GPU. Please completely uninstall the current PyTorch version and download the latest version from the official PyTorch website.
- :::
- ```bash
- cixbuild ./onnx_deeplab_v3_build.cfg
- ```
-
-## Model Deployment
-
-### NPU Inference
-
-Copy the compiled .cix model file to your Orion O6 / O6N development board for model validation:
-
-```bash
-python3 inference_npu.py --images ./test_data/ --model_path ./deeplab_v3.ci
-```
-
-Example output:
-
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3$ time python3 inference_npu.py --images ./test_data/ --model_path ./deeplab_v3.cix
-npu: noe_init_context success
-npu: noe_load_graph success
-Input tensor count is 1.
-Output tensor count is 1.
-npu: noe_create_job success
-save output: noe_ILSVRC2012_val_00004704.JPEG
-npu: noe_clean_job success
-npu: noe_unload_graph success
-npu: noe_deinit_context success
-
-real 0m9.047s
-user 0m4.314s
-sys 0m0.478s
-```
-
-The results are saved in the `output` directory.
-
-
-
-### CPU Inference
-
-Run inference on the ONNX model using CPU for verification. This can be executed on either an x86 host or Orion O6 / O6N:
-
-```bash
-python3 inference_onnx.py --images ./test_data/ --onnx_path ./deeplabv3_resnet50-sim.onnx
-```
-
-Example output:
-
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Semantic_Segmentation/onnx_deeplab_v3$ time python3 inference_onnx.py --images ./test_data/ --onnx_path ./deeplabv3_resnet50-sim.onnx
-save output: onnx_ILSVRC2012_val_00004704.JPEG
-
-real 0m7.605s
-user 0m33.235s
-sys 0m0.558s
-```
-
-The results are saved in the `output` directory.
-
-
-You can see that the inference results are consistent between NPU and CPU, but the NPU provides significantly faster execution speed.
-
-## References
-
-Paper: [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_env-setup.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_env-setup.mdx
new file mode 100644
index 000000000..69dab38b3
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_env-setup.mdx
@@ -0,0 +1,116 @@
+## Overview
+
+You need to access the CIX Developer Center to obtain the latest CIX AI development toolkit: NOE SDK (NeuralONE AI SDK).
+
+NOE SDK leverages NPU heterogeneous hardware acceleration to help developers efficiently build and deploy energy-efficient edge AI inference applications.
+
+:::tip CIX Developer Center
+
+The CIX Developer Center provides resources such as SDKs, chip manuals, and development documentation.
+
+:::
+
+## Get the SDK
+
+Register and sign in to the [CIX Developer Center](https://developer.cixtech.com/). Scroll to the Software SDK section and click `Learn more` for NeuralONE AI SDK. The SDK will be downloaded automatically.
+
+Extract the SDK:
+
+
+
+```bash
+tar -zxvf cix_noe_sdk_xxx_release.tar.gz
+```
+
+
+
+Extracted directory structure:
+
+```bash
+.
+├── CixBuilder-6.1.3407.2-cp310-none-linux_x86_64.whl
+├── cix-noe-umd_2.0.2_arm64.deb
+├── cix-npu-driver_2.0.1_arm64.deb
+├── env_setup.sh
+├── npu_sdk_last_manifest_list.xml
+└── requirements.txt
+```
+
+## Set up the host environment
+
+### Create a virtual environment
+
+It is recommended to use [miniconda](https://www.anaconda.com/docs/getting-started/miniconda/main) to manage virtual environments.
+
+:::warning[Python version]
+The SDK is only compatible with Python 3.10.
+:::
+
+
+
+```bash
+conda create -n noe python=3.10
+conda activate noe
+```
+
+
+
+### Use the script to set up the development environment
+
+
+
+```bash
+bash env_setup.sh
+```
+
+
+
+### Verify the build environment
+
+Run `cixbuild -v` in the terminal to check the build environment version.
+
+
+
+```bash
+cixbuild -v
+```
+
+
+
+## Set up the environment on the device
+
+### Install the NPU driver
+
+:::tip[NPU driver]
+The official OS image for Radxa Orion O6 / O6N already includes the NPU driver, so you do not need to install it again.
+:::
+
+Copy the NPU driver package to the device and run the following command to install it.
+
+
+
+```bash
+sudo dpkg -i ./cix-npu-driver_xxx_arm64.deb
+```
+
+
+
+### Install NPU UMD
+
+:::info[UMD]
+UMD stands for User Mode Driver.
+
+UMD provides standard APIs as a shared library. It parses application requests and coordinates with the NPU driver for resource allocation and task submission.
+
+For detailed API usage, refer to [**API manual**](../../../../orion/o6/app-development/artificial-intelligence/API-manual.md).
+:::
+
+Copy the UMD package to the device and run the following command to install it.
+
+
+
+```bash
+sudo dpkg -i ./cix-noe-umd_xxx_arm64.deb
+```
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_fast-scnn.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_fast-scnn.mdx
new file mode 100644
index 000000000..c3222c07f
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_fast-scnn.mdx
@@ -0,0 +1,128 @@
+**Fast-SCNN** is a lightweight convolutional neural network designed for real-time semantic segmentation on high-resolution images. It adopts an innovative multi-branch architecture. By sharing feature extraction modules and using a lightweight design, it alleviates the heavy compute pressure of traditional segmentation models when processing large images.
+
+- Key features: Focuses on pixel-level real-time semantic segmentation, enabling low-latency class labeling for complex scenes. It is widely used in areas with strict responsiveness requirements such as autonomous driving, mobile AR, and robot obstacle avoidance.
+- Version notes: This example uses Fast-SCNN. With a unique “learning to downsample” module combined with global feature extraction, it greatly improves inference efficiency without sacrificing key spatial details. It reduces reliance on high-end GPUs and is a common lightweight choice for high-resolution real-time image understanding on embedded devices.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Semantic_Segmentation/torch_fast_scnn
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Semantic_Segmentation/torch_fast_scnn/fast_scnn.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── fast_scnn.cix
+├── inference_npu.py
+├── inference_pt.py
+├── model
+├── ReadMe.md
+└── test_data
+```
+
+### Quantize and convert the model
+
+
+
+```bash
+cd ..
+cixbuild cfg/fast_scnnbuild.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_pt.py
+```
+
+
+
+#### Inference output
+
+
+
+{" "}
+
+

+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+
+{" "}
+
+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_midas-v2.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_midas-v2.mdx
new file mode 100644
index 000000000..60b8a6f63
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_midas-v2.mdx
@@ -0,0 +1,273 @@
+**MiDaS** is an advanced deep learning model focused on monocular depth estimation. It removes the reliance on stereo cameras or infrared sensors and can infer relative depth from a single RGB image, effectively turning a 2D image into a depth map with spatial layering.
+
+- Key features: Excellent zero-shot generalization that can handle unseen complex indoor and outdoor environments. It produces depth maps with clear object boundaries and smooth depth transitions, and is widely used in AR, background blur, robot obstacle avoidance, and 3D scene reconstruction.
+- Version notes: This example uses MiDaS v2. As a mature classic version in the series, it addresses common scene limitations in monocular depth estimation through pre-training on large mixed datasets. While maintaining mainstream inference speed, it provides stable depth predictions with high spatial fidelity, making it a balanced choice for low-cost, high-quality spatial perception tasks.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Depth_Estimation/onnx_MiDaS_v2
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Depth_Estimation/onnx_MiDaS_v2/MiDaS_v2.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Depth_Estimation/onnx_MiDaS_v2/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Depth_Estimation/onnx_MiDaS_v2/model/MiDaS_v2.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── README.md
+├── test_data
+└── MiDaS_v2.cix
+```
+
+### Quantize and convert the model
+
+
+
+```bash
+cd ..
+cixbuild cfg/onnx_MiDasV2build.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py
+initialize
+loading model...
+ processing ./test_data/1.jpg
+Inference time: 18.44 ms
+ processing ./test_data/2.jpg
+Inference time: 16.14 ms
+ processing ./test_data/3.jpg
+Inference time: 15.61 ms
+Finished
+```
+
+
+
+
+
+{/* Left container: portrait image */}
+
+{" "}
+
+
+

+
+
+{/* Right container: two landscape images */}
+
+{" "}
+
+
+
+

+
+
+

+
+
+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py
+initialize
+loading model...
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+ processing ./test_data/3.jpg
+Inference time: 4.72 ms
+ processing ./test_data/2.jpg
+Inference time: 6.10 ms
+ processing ./test_data/1.jpg
+Inference time: 6.42 ms
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+finished
+```
+
+
+
+#### Inference output
+
+
+
+{/* Left container: portrait image */}
+
+{" "}
+
+
+

+
+
+{/* Right container: two landscape images */}
+
+{" "}
+
+
+
+

+
+
+

+
+
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_minicpm-o-2-6.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_minicpm-o-2-6.mdx
new file mode 100644
index 000000000..054065140
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_minicpm-o-2-6.mdx
@@ -0,0 +1,306 @@
+**Qwen2-VL** is an open-source multimodal vision-language model series developed by Alibaba Cloud's Tongyi Qianwen team. This series achieves deep fusion between unified visual encoders and large language model foundations, aiming to provide powerful image understanding, fine-grained reasoning, and open-world dialogue capabilities.
+
+- **Key Features**: The series models generally possess efficient visual-semantic alignment capabilities, supporting precise image content description, complex Q&A, logical reasoning, and multi-turn interactions. Their architecture balances performance and efficiency, showing broad application potential in document analysis, intelligent assistants, and multimodal search scenarios.
+- **Version Note**: This model Qwen2-VL-2B-Instruct is a lightweight practice version of the series with approximately 2 billion parameters, optimized through instruction fine-tuning for deployment in edge and low-resource environments, enabling real-time multimodal interaction.
+
+## Environment Setup
+
+Refer to the [llama.cpp](../../../../orion/o6/app-development/artificial-intelligence/llama_cpp.md) documentation to prepare the llama.cpp tools.
+
+## Quick Start
+
+### Download Model
+
+
+
+```bash
+pip3 install modelscope
+cd llama.cpp
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE mmproj-Qwen2-VL-2b-Instruct-F16.gguf --local_dir ./
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE Qwen2-VL-2B-Instruct-Q5_K_M.gguf --local_dir ./
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE test.png --local_dir ./
+```
+
+
+
+### Run Model
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./mmproj-Qwen2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./test.png
+```
+
+
+
+## Complete Conversion Workflow
+
+### Clone Model Repository
+
+
+
+```bash
+cd llama.cpp
+git clone https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
+```
+
+
+
+### Create Virtual Environment
+
+
+
+```bash
+python3 -m venv .venv
+source .venv/bin/activate
+pip3 install -r requirements.txt
+```
+
+
+
+### Model Conversion
+
+#### Convert Text Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py ./Qwen2-VL-2B-Instruct
+```
+
+
+
+#### Convert Vision Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py --mmproj ./Qwen2-VL-2B-Instruct
+```
+
+
+
+### Model Quantization
+
+Here we use Q5_K_M quantization.
+
+
+
+```bash
+./build/bin/llama-quantize ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-F16.gguf ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf Q5_K_M
+```
+
+
+
+### Model Test
+
+
+

+
+ Model test input
+
+
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2-VL-2B-Instruct/mmproj-Qwen2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2-VL-2B-Instruct/test.png
+```
+
+
+
+Model output:
+
+```bash
+$ ./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2-VL-2B-Instruct/mmproj-Qwen
+2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2-VL-2B-Instruct/test.png
+build: 7110 (3ae282a06) with cc (Debian 12.2.0-14+deb12u1) 12.2.0 for aarch64-linux-gnu
+llama_model_loader: loaded meta data with 33 key-value pairs and 338 tensors from ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf (version GGUF V3 (latest))
+llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
+llama_model_loader: - kv 0: general.architecture str = qwen2vl
+llama_model_loader: - kv 1: general.type str = model
+llama_model_loader: - kv 2: general.name str = Qwen2 VL 2B Instruct
+llama_model_loader: - kv 3: general.finetune str = Instruct
+llama_model_loader: - kv 4: general.basename str = Qwen2-VL
+llama_model_loader: - kv 5: general.size_label str = 2B
+llama_model_loader: - kv 6: general.license str = apache-2.0
+llama_model_loader: - kv 7: general.base_model.count u32 = 1
+llama_model_loader: - kv 8: general.base_model.0.name str = Qwen2 VL 2B
+llama_model_loader: - kv 9: general.base_model.0.organization str = Qwen
+llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-VL-2B
+llama_model_loader: - kv 11: general.tags arr[str,2] = ["multimodal", "image-text-to-text"]
+llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
+llama_model_loader: - kv 13: qwen2vl.block_count u32 = 28
+llama_model_loader: - kv 14: qwen2vl.context_length u32 = 32768
+llama_model_loader: - kv 15: qwen2vl.embedding_length u32 = 1536
+llama_model_loader: - kv 16: qwen2vl.feed_forward_length u32 = 8960
+llama_model_loader: - kv 17: qwen2vl.attention.head_count u32 = 12
+llama_model_loader: - kv 18: qwen2vl.attention.head_count_kv u32 = 2
+llama_model_loader: - kv 19: qwen2vl.rope.freq_base f32 = 1000000.000000
+llama_model_loader: - kv 20: qwen2vl.attention.layer_norm_rms_epsilon f32 = 0.000001
+llama_model_loader: - kv 21: qwen2vl.rope.dimension_sections arr[i32,4] = [16, 24, 24, 0]
+llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
+llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2
+llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
+llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
+llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
+llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151645
+llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643
+llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 151643
+llama_model_loader: - kv 30: tokenizer.chat_template str = {% set image_count = namespace(value=...
+llama_model_loader: - kv 31: general.quantization_version u32 = 2
+llama_model_loader: - kv 32: general.file_type u32 = 17
+llama_model_loader: - type f32: 141 tensors
+llama_model_loader: - type q5_K: 168 tensors
+llama_model_loader: - type q6_K: 29 tensors
+print_info: file format = GGUF V3 (latest)
+print_info: file type = Q5_K - Medium
+print_info: file size = 1.04 GiB (5.80 BPW)
+load: printing all EOG tokens:
+load: - 151643 ('<|endoftext|>')
+load: - 151645 ('<|im_end|>')
+load: special tokens cache size = 14
+load: token to piece cache size = 0.9309 MB
+print_info: arch = qwen2vl
+print_info: vocab_only = 0
+print_info: n_ctx_train = 32768
+print_info: n_embd = 1536
+print_info: n_embd_inp = 1536
+print_info: n_layer = 28
+print_info: n_head = 12
+print_info: n_head_kv = 2
+print_info: n_rot = 128
+print_info: n_swa = 0
+print_info: is_swa_any = 0
+print_info: n_embd_head_k = 128
+print_info: n_embd_head_v = 128
+print_info: n_gqa = 6
+print_info: n_embd_k_gqa = 256
+print_info: n_embd_v_gqa = 256
+print_info: f_norm_eps = 0.0e+00
+print_info: f_norm_rms_eps = 1.0e-06
+print_info: f_clamp_kqv = 0.0e+00
+print_info: f_max_alibi_bias = 0.0e+00
+print_info: f_logit_scale = 0.0e+00
+print_info: f_attn_scale = 0.0e+00
+print_info: n_ff = 8960
+print_info: n_expert = 0
+print_info: n_expert_used = 0
+print_info: n_expert_groups = 0
+print_info: n_group_used = 0
+print_info: causal attn = 1
+print_info: pooling type = -1
+print_info: rope type = 8
+print_info: rope scaling = linear
+print_info: freq_base_train = 1000000.0
+print_info: freq_scale_train = 1
+print_info: n_ctx_orig_yarn = 32768
+print_info: rope_finetuned = unknown
+print_info: mrope sections = [16, 24, 24, 0]
+print_info: model type = 1.5B
+print_info: model params = 1.54 B
+print_info: general.name = Qwen2 VL 2B Instruct
+print_info: vocab type = BPE
+print_info: n_vocab = 151936
+print_info: n_merges = 151387
+print_info: BOS token = 151643 '<|endoftext|>'
+print_info: EOS token = 151645 '<|im_end|>'
+print_info: EOT token = 151645 '<|im_end|>'
+print_info: PAD token = 151643 '<|endoftext|>'
+print_info: LF token = 198 'Ċ'
+print_info: EOG token = 151643 '<|endoftext|>'
+print_info: EOG token = 151645 '<|im_end|>'
+print_info: max token length = 256
+load_tensors: loading model tensors, this can take a while... (mmap = true)
+load_tensors: CPU_Mapped model buffer size = 1067.26 MiB
+....................................................................................
+llama_context: constructing llama_context
+llama_context: n_seq_max = 1
+llama_context: n_ctx = 4096
+llama_context: n_ctx_seq = 4096
+llama_context: n_batch = 2048
+llama_context: n_ubatch = 512
+llama_context: causal_attn = 1
+llama_context: flash_attn = auto
+llama_context: kv_unified = false
+llama_context: freq_base = 1000000.0
+llama_context: freq_scale = 1
+llama_context: n_ctx_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
+llama_context: CPU output buffer size = 0.58 MiB
+llama_kv_cache: CPU KV buffer size = 112.00 MiB
+llama_kv_cache: size = 112.00 MiB ( 4096 cells, 28 layers, 1/1 seqs), K (f16): 56.00 MiB, V (f16): 56.00 MiB
+llama_context: Flash Attention was auto, set to enabled
+llama_context: CPU compute buffer size = 302.75 MiB
+llama_context: graph nodes = 959
+llama_context: graph splits = 1
+common_init_from_params: added <|endoftext|> logit bias = -inf
+common_init_from_params: added <|im_end|> logit bias = -inf
+common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
+common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
+mtmd_cli_context: chat template example:
+<|im_start|>system
+You are a helpful assistant<|im_end|>
+<|im_start|>user
+Hello<|im_end|>
+<|im_start|>assistant
+Hi there<|im_end|>
+<|im_start|>user
+How are you?<|im_end|>
+<|im_start|>assistant
+
+clip_model_loader: model name: Qwen2 VL 2B Instruct
+clip_model_loader: description:
+clip_model_loader: GGUF version: 3
+clip_model_loader: alignment: 32
+clip_model_loader: n_tensors: 520
+clip_model_loader: n_kv: 27
+
+clip_model_loader: has vision encoder
+clip_ctx: CLIP using CPU backend
+load_hparams: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks
+load_hparams: if you encounter problems with accuracy, try adding --image-min-tokens 1024
+load_hparams: more info: https://github.com/ggml-org/llama.cpp/issues/16842
+
+load_hparams: projector: qwen2vl_merger
+load_hparams: n_embd: 1280
+load_hparams: n_head: 16
+load_hparams: n_ff: 1536
+load_hparams: n_layer: 32
+load_hparams: ffn_op: gelu_quick
+load_hparams: projection_dim: 1536
+
+--- vision hparams ---
+load_hparams: image_size: 560
+load_hparams: patch_size: 14
+load_hparams: has_llava_proj: 0
+load_hparams: minicpmv_version: 0
+load_hparams: n_merge: 2
+load_hparams: n_wa_pattern: 0
+load_hparams: image_min_pixels: 6272
+load_hparams: image_max_pixels: 3211264
+
+load_hparams: model size: 1269.94 MiB
+load_hparams: metadata size: 0.18 MiB
+alloc_compute_meta: warmup with image size = 1288 x 1288
+alloc_compute_meta: CPU compute buffer size = 267.08 MiB
+alloc_compute_meta: graph splits = 1, nodes = 1085
+warmup: flash attention is enabled
+main: loading model: ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf
+encoding image slice...
+image slice encoded in 11683 ms
+decoding image batch 1/1, n_tokens_batch = 361
+image decoded (batch 1/1) in 6250 ms
+
+The image depicts a single rose placed on a marble surface, likely a table or a shelf. The rose is positioned in such a way that it is slightly tilted, with its petals facing upwards. The background features a dark, possibly stone or marble, wall with a textured surface, and a window or mirror reflecting the surroundings. The overall composition of the image creates a serene and elegant atmosphere.
+
+
+llama_perf_context_print: load time = 416.66 ms
+llama_perf_context_print: prompt eval time = 18253.30 ms / 375 tokens ( 48.68 ms per token, 20.54 tokens per second)
+llama_perf_context_print: eval time = 5283.83 ms / 78 runs ( 67.74 ms per token, 14.76 tokens per second)
+llama_perf_context_print: total time = 23892.18 ms / 453 tokens
+llama_perf_context_print: graphs reused = 0
+```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_mobilenet-v2.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_mobilenet-v2.mdx
new file mode 100644
index 000000000..ccf7b507c
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_mobilenet-v2.mdx
@@ -0,0 +1,152 @@
+**MobileNet** is a lightweight deep neural network family designed by Google for mobile and embedded devices. By innovating convolution computation, it greatly reduces parameter count and computational complexity, enabling high-performance vision algorithms to run in real time on compute-constrained devices such as smartphones and IoT terminals.
+
+- Key features: Supports efficient image classification, object detection, and semantic segmentation, delivering high-quality visual perception with very low latency. It is a core engine for mobile deep learning applications.
+- Version notes: This example uses MobileNetV2. As an advanced version in the series, it adopts the “inverted residual and linear bottleneck” architecture, improving memory efficiency and enhancing complex feature extraction. It is an industry benchmark that balances fast inference and strong accuracy for edge AI applications.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Image_Classification/onnx_mobilenet_v2
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_mobilenet_v2/mobilenet_v2.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Image_Classification/onnx_mobilenet_v2/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_mobilenet_v2/model/mobilenet_v2.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_mobilenet_v2/model/mobilenetv2-7.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── mobilenet_v2.cix
+├── model
+├── ReadMe.md
+└── test_data
+```
+
+### Quantize and convert the model
+
+
+
+```bash
+cd ..
+cixbuild cfg/onnx_mobilenet_v2build.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py --images test_data --onnx_path model/mobilenetv2-7.onnx
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py --images test_data --onnx_path model/mobilenetv2-7.onnx
+image path : test_data/ILSVRC2012_val_00024154.JPEG
+Ibizan hound, Ibizan Podenco
+image path : test_data/ILSVRC2012_val_00021564.JPEG
+coucal
+image path : test_data/ILSVRC2012_val_00002899.JPEG
+rock python, rock snake, Python sebae
+image path : test_data/ILSVRC2012_val_00045790.JPEG
+Yorkshire terrier
+image path : test_data/ILSVRC2012_val_00037133.JPEG
+ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
+```
+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py --images test_data --model_path mobilenet_v2.cix
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py --images test_data --model_path mobilenet_v2.cix
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+image path : ./test_data/ILSVRC2012_val_00037133.JPEG
+ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
+image path : ./test_data/ILSVRC2012_val_00021564.JPEG
+coucal
+image path : ./test_data/ILSVRC2012_val_00024154.JPEG
+Ibizan hound, Ibizan Podenco
+image path : ./test_data/ILSVRC2012_val_00002899.JPEG
+boa constrictor, Constrictor constrictor
+image path : ./test_data/ILSVRC2012_val_00045790.JPEG
+Yorkshire terrier
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_npu-introduction.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_npu-introduction.mdx
deleted file mode 100644
index 315a04449..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_npu-introduction.mdx
+++ /dev/null
@@ -1,67 +0,0 @@
-## NPU Overview
-
-Radxa Orion O6 / O6N delivers up to 28.8 TOPS of NPU (Neural Processing Unit) performance and supports INT4 / INT8 / INT16 / FP16 / BF16, and TF32 acceleration.
-
-This document explains how to use the CIX P1 NPU SDK to run AI models and applications that leverage NPU-accelerated inference. It covers the compilation tools, toolchains, and step-by-step guidance for common sample models.
-
-## CIX SDK
-
-Visit the [CIX Developer Center](https://developer.cixtech.com/) to download the latest CIX AI development toolkit (NeuralONE AI SDK).
-
-The CIX P1 AI development toolkit supports heterogeneous hardware acceleration, including NPUs, enabling energy-efficient edge AI inference.
-
-:::tip CIX Developer Center
-
-The CIX Developer Center provides software SDKs, chip manuals, development guides, and more resources.
-
-:::
-
-### Download the SDK
-
-Register and sign in to the [CIX Developer Center](https://developer.cixtech.com/). Inside the Software SDK section, click **Learn more** under the NeuralONE AI SDK entry to start the download automatically.
-
-### Extract the SDK
-
-```bash
-tar -xvf cix_noe_sdk_xxx_release.tar.gz
-```
-
-After extraction, the folder contains the following files:
-
-- cix-noe-umd_xxx_arm64.deb
-- cix-npu-driver_xxx_arm64.deb
-- CixBuilder_xxx-cp310-none-linux_x86_64.whl
-- env_setup.sh
-- npu_sdk_last_manifest_list.xml
-- requirements.txt
-
-### Install the NPU Driver
-
-Change into the extracted folder and run the following command to install the NPU driver:
-
-```bash
-sudo dpkg -i ./cix-npu-driver_xxx_arm64.deb
-```
-
-### Install the NOE Compiler
-
-The NOE Compiler converts ONNX models into a format optimized for NPU-accelerated inference.
-
-```bash
-pip3 install -r requirements.txt
-pip3 install ./CixBuilder_xxx-cp310-none-linux_x86_64.whl
-```
-
-### Install NOE UMD
-
-```bash
-sudo dpkg -i ./cix-noe-umd_xxx_arm64.deb
-```
-
-### Verify the Installation
-
-Use the `cixbuild` command to confirm that the NOE Compiler is installed correctly.
-
-```bash
-cixbuild -v
-```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_openpose.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_openpose.mdx
index c80ba91de..4a397ad98 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_openpose.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_openpose.mdx
@@ -1,219 +1,141 @@
-This document explains how to use the CIX P1 NPU SDK to convert [OpenPose](https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch) into a model that can run on CIX SOC NPU.
+**OpenPose** is a pioneering real-time multi-person pose estimation architecture. With its original bottom-up mechanism based on Part Affinity Fields (PAFs), it avoids the limitation of traditional methods where computation grows rapidly with the number of people, enabling fast reconstruction of human skeletons in complex crowds.
-There are four main steps:
-:::tip
-Steps 1-3 should be executed in a Linux environment on an x86 host
-:::
+- Key features: Supports simultaneous keypoint extraction for multiple people across body, hands, face, and feet, with strong multi-scale perception and spatial-structure modeling. It is widely used in motion capture, human-computer interaction, sports analytics, and security behavior recognition.
+- Version notes: This example uses the standard OpenPose architecture. As a cornerstone of pose estimation, it uses a dual-branch network to regress both keypoint heatmaps and limb association vectors, effectively handling challenging cases such as occlusion and overlapping people. With its broad applicability and mature ecosystem, it remains a reliable classic choice for high-accuracy, multi-dimensional human perception.
-1. Download the NPU SDK and install NOE Compiler
-2. Download model files (code and scripts)
-3. Compile the model
-4. Deploy the model to Orion O6 / O6N
+:::info[Environment setup]
+You need to set up the environment in advance.
-## Download NPU SDK and Install NOE Compiler
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
-Please refer to [Install NPU SDK](./npu-introduction#npu-sdk-installation) to install the NPU SDK and NOE Compiler.
+## Quick start
-## Download Model Files
+### Download model files
-The CIX AI Model Hub contains all the necessary files for OpenPose. Please download them according to [Download CIX AI Model Hub](./ai-hub#download-cix-ai-model-hub), then navigate to the corresponding directory.
+
```bash
-cd ai_model_hub/models/ComputeVision/Pose_Estimation/onnx_openpose
+cd ai_model_hub_25_Q3/models/ComputeVision/Pose_Estimation/onnx_openpose
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Pose_Estimation/onnx_openpose/human-pose-estimation.cix
```
-Please confirm that the directory structure matches the following:
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
```bash
-.
+cd ai_model_hub_25_Q3/models/ComputeVision/Pose_Estimation/onnx_openpose
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Pose_Estimation/onnx_openpose/model/human-pose-estimation.onnx
+```
+
+
+
+### Project structure
+
+```txt
├── cfg
-│ ├── human-pose-estimationbuild.cfg
-│ └── opt_template.json
├── datasets
-│ └── calib_data_my.npy
+├── human-pose-estimation.cix
├── inference_npu.py
├── inference_onnx.py
-├── output_onnx.jpg
+├── model
├── ReadMe.md
└── test_data
- ├── 1.jpeg
- └── 2.jpeg
```
-## Compile the Model
+### Quantize and convert the model
-:::tip
-Users don't need to compile the model from scratch. Radxa provides a pre-compiled human-pose-estimation.cix model (which can be downloaded using the command below). If you use the pre-compiled model, you can skip the "Compile the Model" step.
+
```bash
-wget https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Pose_Estimation/onnx_openpose/human-pose-estimation.cix
+cd ..
+cixbuild cfg/human-pose-estimationbuild.cfg
```
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
:::
-### Prepare ONNX Model
-
-- Download the ONNX model
-
- [human-pose-estimation.onnx](https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Pose_Estimation/onnx_openpose/model/human-pose-estimation.onnx)
-
-- Simplify the model
-
- Here we use onnxsim to fix the model input shape and simplify the model
-
- ```bash
- pip3 install onnxsim onnxruntime
- onnxsim human-pose-estimation.onnx human-pose-estimation-sim.onnx --overwrite-input-shape 1,3,256,360
- ```
-
-### Compile the Model
-
-CIX SOC NPU supports INT8 computation. Before compiling the model, we need to use NOE Compiler to quantize the model to INT8.
-
-- Prepare the calibration dataset
-
- - Use the existing calibration dataset in `datasets`
-
- ```bash
- .
- └── calib_data_my.npy
- ```
-
- - Prepare your own calibration dataset
-
- The `test_data` directory already contains several image files for calibration
-
- ```bash
- .
- ├── 1.jpeg
- └── 2.jpeg
- ```
-
- Refer to the following script to generate the calibration file
-
- ```python
- import sys
- import os
- import numpy as np
- import cv2
- _abs_path = os.path.join(os.getcwd(), "../../../../")
- sys.path.append(_abs_path)
- from utils.image_process import preprocess_openpose
- from utils.tools import get_file_list
- # Get a list of images from the provided path
- images_path = "test_data"
- images_list = get_file_list(images_path)
- data = []
- for image_path in images_list:
- img_numpy = cv2.imread(image_path)
- input = preprocess_openpose(img_numpy, 256)[0]
- data.append(input)
- # concat the data and save calib dataset
- data = np.concatenate(data, axis=0)
- np.save("datasets/calib_data_tmp.npy", data)
- print("Generate calib dataset success.")
- ```
-
-- Quantize and compile the model using NOE Compiler
-
- - Create a configuration file for quantization and compilation, refer to the following configuration
-
- ```bash
- [Common]
- mode = build
-
- [Parser]
- model_type = ONNX
- model_name = human-pose-estimation
- detection_postprocess =
- model_domain = OBJECT_DETECTION
- input_data_format = NCHW
- input_model = ./human-pose-estimation-sim.onnx
- input = images
- input_shape = [1, 3, 256, 360]
- output_dir = ./
-
- [Optimizer]
- dataset = numpydataset
- calibration_data = ./datasets/calib_data_tmp.npy
- calibration_batch_size = 1
- output_dir = ./
- quantize_method_for_activation = per_tensor_asymmetric
- quantize_method_for_weight = per_channel_symmetric_restricted_range
- save_statistic_info = True
- opt_config = cfg/opt_template.json
- cast_dtypes_for_lib = True
-
- [GBuilder]
- target = X2_1204MP3
- outputs = human-pose-estimation.cix
- tiling = fps
- ```
-
- - Compile the model
- :::tip
- If you encounter the cixbuild error: `[E] Optimizing model failed! CUDA error: no kernel image is available for execution on the device ...`
- This means the current version of torch doesn't support this GPU. Please completely uninstall the current version of torch, then download the latest version from the official torch website.
- :::
- ```bash
- cixbuild ./human-pose-estimationbuild.cfg
- ```
-
-## Model Deployment
-
-### NPU Inference
-
-Copy the compiled .cix model to Orion O6 / O6N for model validation
+### Test inference on the host
+
+#### Run the inference script
+
+
```bash
-python3 inference_npu.py --image_path ./test_data/ --model_path human-pose-estimation.cix
+python3 inference_onnx.py
```
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Pose_Estimation/onnx_openpose$ time python3 inference_npu.py --image_path ./test_data/ --model_path human-pose-estimation.cix
-npu: noe_init_context success
-npu: noe_load_graph success
-Input tensor count is 1.
-Output tensor count is 4.
-npu: noe_create_job success
-npu: noe_clean_job success
-npu: noe_unload_graph success
-npu: noe_deinit_context success
+
-real 0m2.788s
-user 0m3.158s
-sys 0m0.276s
-```
+#### Inference output
+
+
+
+{" "}
-Results are saved in the `output` folder
+

+

-
+
-
+### Deploy on NPU
-### CPU Inference
+#### Run the inference script
-Use CPU to perform inference on the ONNX model for validation. This can be run on either an x86 host or Orion O6 / O6N
+
```bash
-python3 inference_onnx.py --image_path ./test_data/ --onnx_path ./yolov8l.onnx
+python3 inference_npu.py
```
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Pose_Estimation/onnx_openpose$ time python3 inference_onnx.py --image_path ./test_data/ --onnx_path human-pose-estimation.onnx
+
+
+#### Inference output
-real 0m3.138s
-user 0m6.961s
-sys 0m0.318s
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 4.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
```
-Results are saved in the `output` folder
-
+
-
+
-The inference results are consistent between NPU and CPU, but the running speed is significantly faster on NPU
+{" "}
-## Reference Documents
+

+

-Paper: [Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose](https://arxiv.org/abs/1811.12004)
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_pp-ocr-v4.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_pp-ocr-v4.mdx
new file mode 100644
index 000000000..8e47aed2a
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_pp-ocr-v4.mdx
@@ -0,0 +1,277 @@
+**PP-OCR** is an open-source general-purpose OCR model family developed by Baidu. It uses a complete end-to-end vision recognition pipeline, covering three core modules: text detection, direction classification, and text recognition, aiming to provide robust text extraction that works reliably in a wide range of complex environments.
+
+- Key features: Supports high-accuracy multilingual text extraction and recognition, with strong background-noise suppression and robustness to skewed or blurry text. It is widely used in document digitization, industrial inspection, license-plate recognition, and autonomous-driving scenarios.
+- Version notes: This example uses PP-OCRv4. As the latest advanced version in the series, it introduces a lighter yet stronger detection architecture and recognition distillation techniques, significantly improving accuracy for small text and rare characters without additional compute overhead. It is a common lightweight choice that balances accuracy and extreme inference speed for real-time mobile text analysis.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/OCR/onnx_PP_OCRv4
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/cls.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/PP-OCRv4_det.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/rec.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/OCR/onnx_PP_OCRv4/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/model/cls.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/model/PP-OCRv4_det.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/OCR/onnx_PP_OCRv4/model/rec.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── cls.cix
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ppocr_keys_v1.txt
+├── pp_ocr.py
+├── PP-OCRv4_det.cix
+├── ReadMe.md
+├── rec.cix
+├── simfang.ttf
+└── test_data
+```
+
+### Quantize and convert the model
+
+#### Convert the detection module
+
+
+
+```bash
+cd ..
+cixbuild cfg/detbuild.cfg
+```
+
+
+
+#### Convert the classification module
+
+
+
+```bash
+cixbuild cfg/clsbuild.cfg
+```
+
+
+
+#### Convert the recognition module
+
+
+
+```bash
+cixbuild cfg/recbuild.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py
+[[[36.0, 409.0], [486.0, 386.0], [489.0, 434.0], [38.0, 457.0]], ('', 0.9942322969436646)]
+[[[183.0, 453.0], [401.0, 444.0], [403.0, 485.0], [185.0, 494.0]], ('', 0.9480939507484436)]
+[[[14.0, 501.0], [519.0, 483.0], [521.0, 537.0], [15.0, 555.0]], ('', 0.9961597919464111)]
+[[[73.0, 550.0], [451.0, 539.0], [452.0, 576.0], [74.0, 587.0]], ('', 0.9754183292388916)]
+[[[292.0, 295.0], [335.0, 294.0], [350.0, 852.0], [307.0, 853.0]], ('', 0.9570525288581848)]
+[[[343.0, 298.0], [380.0, 297.0], [389.0, 665.0], [352.0, 666.0]], ('', 0.9861757755279541)]
+[[[34.0, 79.0], [440.0, 82.0], [439.0, 174.0], [33.0, 171.0]], ('', 0.9949513673782349)]
+[[[31.0, 183.0], [253.0, 183.0], [253.0, 243.0], [31.0, 243.0]], ('', 0.9937998652458191)]
+[[[39.0, 258.0], [469.0, 258.0], [469.0, 309.0], [39.0, 309.0]], ('', 0.9810954928398132)]
+[[[35.0, 325.0], [410.0, 327.0], [409.0, 382.0], [34.0, 380.0]], ('', 0.999457061290741)]
+[[[34.0, 406.0], [435.0, 406.0], [435.0, 454.0], [34.0, 454.0]], ('', 0.9994476437568665)]
+[[[32.0, 477.0], [341.0, 474.0], [341.0, 526.0], [32.0, 528.0]], ('', 0.9984829425811768)]
+[[[32.0, 549.0], [353.0, 549.0], [353.0, 600.0], [32.0, 600.0]], ('', 0.9997670650482178)]
+[[[30.0, 621.0], [263.0, 617.0], [264.0, 668.0], [31.0, 672.0]], ('', 0.9565265774726868)]
+[[[33.0, 692.0], [365.0, 695.0], [364.0, 743.0], [33.0, 740.0]], ('', 0.9993946552276611)]
+[[[32.0, 763.0], [499.0, 766.0], [498.0, 816.0], [32.0, 813.0]], ('', 0.9533663392066956)]
+[[[38.0, 840.0], [407.0, 840.0], [407.0, 884.0], [38.0, 884.0]], ('', 0.9451590776443481)]
+[[[525.0, 842.0], [690.0, 842.0], [690.0, 898.0], [525.0, 898.0]], ('', 0.9980840682983398)]
+[[[34.0, 910.0], [522.0, 910.0], [522.0, 957.0], [34.0, 957.0]], ('', 0.9985333681106567)]
+[[[39.0, 983.0], [536.0, 983.0], [536.0, 1027.0], [39.0, 1027.0]], ('', 0.9993751645088196)]
+[[[32.0, 1051.0], [201.0, 1048.0], [202.0, 1104.0], [33.0, 1107.0]], ('', 0.9753393530845642)]
+```
+
+
+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Runtime output
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+[[[36.0, 409.0], [486.0, 386.0], [489.0, 434.0], [38.0, 457.0]], ('', 0.9929969906806946)]
+[[[141.0, 456.0], [403.0, 444.0], [404.0, 483.0], [143.0, 495.0]], ('', 0.862202525138855)]
+[[[17.0, 505.0], [519.0, 484.0], [521.0, 535.0], [19.0, 555.0]], ('', 0.9960622787475586)]
+[[[67.0, 550.0], [418.0, 539.0], [420.0, 578.0], [68.0, 590.0]], ('', 0.9729113578796387)]
+[[[34.0, 78.0], [442.0, 80.0], [441.0, 174.0], [33.0, 171.0]], ('', 0.9860424399375916)]
+[[[30.0, 181.0], [255.0, 181.0], [255.0, 244.0], [30.0, 244.0]], ('', 0.949313759803772)]
+[[[39.0, 258.0], [478.0, 258.0], [478.0, 309.0], [39.0, 309.0]], ('', 0.9828777313232422)]
+[[[36.0, 321.0], [411.0, 325.0], [411.0, 384.0], [35.0, 380.0]], ('', 0.9913207292556763)]
+[[[37.0, 406.0], [432.0, 406.0], [432.0, 450.0], [37.0, 450.0]], ('', 0.9849441051483154)]
+[[[31.0, 475.0], [342.0, 472.0], [342.0, 527.0], [31.0, 530.0]], ('', 0.9962107539176941)]
+[[[593.0, 539.0], [623.0, 539.0], [623.0, 700.0], [593.0, 700.0]], ('ODM OEM', 0.9357462525367737)]
+[[[31.0, 549.0], [353.0, 546.0], [353.0, 599.0], [31.0, 601.0]], ('', 0.9970366358757019)]
+[[[29.0, 620.0], [264.0, 617.0], [264.0, 668.0], [30.0, 671.0]], ('', 0.9971547722816467)]
+[[[33.0, 691.0], [367.0, 694.0], [367.0, 742.0], [33.0, 739.0]], ('', 0.9611490964889526)]
+[[[33.0, 764.0], [497.0, 767.0], [497.0, 813.0], [33.0, 811.0]], ('', 0.9434943795204163)]
+[[[37.0, 839.0], [409.0, 839.0], [409.0, 886.0], [37.0, 886.0]], ('', 0.9171066880226135)]
+[[[526.0, 843.0], [689.0, 843.0], [689.0, 896.0], [526.0, 896.0]], ('', 0.8261211514472961)]
+[[[33.0, 908.0], [522.0, 910.0], [522.0, 957.0], [33.0, 955.0]], ('', 0.9950319528579712)]
+[[[39.0, 983.0], [536.0, 983.0], [536.0, 1027.0], [39.0, 1027.0]], ('', 0.9946616291999817)]
+[[[34.0, 1051.0], [201.0, 1051.0], [201.0, 1103.0], [34.0, 1103.0]], ('', 0.9353836178779602)]
+[[[292.0, 297.0], [335.0, 295.0], [350.0, 850.0], [307.0, 851.0]], ('', 0.976573646068573)]
+[[[344.0, 299.0], [381.0, 298.0], [387.0, 662.0], [351.0, 663.0]], ('', 0.9912211298942566)]
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2-5-vl-3b.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2-5-vl-3b.mdx
new file mode 100644
index 000000000..abe6a47e6
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2-5-vl-3b.mdx
@@ -0,0 +1,314 @@
+**Qwen2.5-VL** is a multimodal vision-language model series developed by Alibaba Cloud's Tongyi Qianwen team. Building on the advantages of its predecessor, this series further strengthens deep understanding of dynamic video, precise parsing of ultra-long documents, and logical reasoning capabilities in complex scenarios, committed to providing more universal visual interaction experiences.
+
+- **Key Features**: The series models possess excellent visual perception and alignment capabilities, capable of processing high-resolution images and video inputs of over 1 hour. Their standout advantage lies in enhanced "Visual Agent" capabilities, supporting precise coordinate perception, UI interface interaction, and complex structured data extraction, demonstrating powerful performance in automated task processing, multimodal search, and high-precision visual Q&A.
+- **Version Note**: This model Qwen2.5-VL-3B-Instruct is a medium-quantized practice version of the series with approximately 3 billion parameters, having undergone strict instruction fine-tuning. It achieves excellent balance between model performance and computational cost, retaining strong multimodal reasoning capabilities while ensuring deployment flexibility, widely suitable for edge devices, real-time interactive applications, and various low-resource development environments.
+
+## Environment Setup
+
+Refer to the [llama.cpp](../../../../orion/o6/app-development/artificial-intelligence/llama_cpp.md) documentation to prepare the llama.cpp tools.
+
+## Quick Start
+
+### Download Model
+
+
+
+```bash
+pip3 install modelscope
+cd llama.cpp
+modelscope download --model radxa/Qwen2.5-VL-3B-Instruct-NOE mmproj-Qwen2.5-VL-3b-Instruct-F16.gguf --local_dir ./
+modelscope download --model radxa/Qwen2.5-VL-3B-Instruct-NOE Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf --local_dir ./
+modelscope download --model radxa/Qwen2.5-VL-3B-Instruct-NOE test.png --local_dir ./
+```
+
+
+
+### Run Model
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf --mmproj ./mmproj-Qwen2.5-VL-3b-Instruct-F16.gguf -p "Describe this image." --image ./test.png
+```
+
+
+
+## Complete Conversion Workflow
+
+### Clone Model Repository
+
+
+
+```bash
+cd llama.cpp
+git clone https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
+```
+
+
+
+### Create Virtual Environment
+
+
+
+```bash
+python3 -m venv .venv
+source .venv/bin/activate
+pip3 install -r requirements.txt
+```
+
+
+
+### Model Conversion
+
+#### Convert Text Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py ./Qwen2.5-VL-3B-Instruct
+```
+
+
+
+#### Convert Vision Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py --mmproj ./Qwen2.5-VL-3B-Instruct
+```
+
+
+
+### Model Quantization
+
+Here we use Q5_K_M quantization.
+
+
+
+```bash
+./build/bin/llama-quantize ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-F16.gguf ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf Q5_K_M
+```
+
+
+
+### Model Test
+
+
+

+
+ Model test input
+
+
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2.5-VL-3B-Instruct/mmproj-Qwen2.5-VL-3b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2.5-VL-3B-Instruct/test.png
+```
+
+
+
+Model output:
+
+```bash
+$ ./build/bin/llama-mtmd-cli -m ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2.5-VL-3B-Instruct/mmproj-Qwen2.5-VL-3b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2.5-VL-3B-Instruct/test.png
+build: 7110 (3ae282a06) with cc (Debian 12.2.0-14+deb12u1) 12.2.0 for aarch64-linux-gnu
+llama_model_loader: loaded meta data with 27 key-value pairs and 434 tensors from ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf (version GGUF V3 (latest))
+llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
+llama_model_loader: - kv 0: general.architecture str = qwen2vl
+llama_model_loader: - kv 1: general.type str = model
+llama_model_loader: - kv 2: general.name str = Qwen2.5 VL 3B Instruct
+llama_model_loader: - kv 3: general.finetune str = Instruct
+llama_model_loader: - kv 4: general.basename str = Qwen2.5-VL
+llama_model_loader: - kv 5: general.size_label str = 3B
+llama_model_loader: - kv 6: qwen2vl.block_count u32 = 36
+llama_model_loader: - kv 7: qwen2vl.context_length u32 = 128000
+llama_model_loader: - kv 8: qwen2vl.embedding_length u32 = 2048
+llama_model_loader: - kv 9: qwen2vl.feed_forward_length u32 = 11008
+llama_model_loader: - kv 10: qwen2vl.attention.head_count u32 = 16
+llama_model_loader: - kv 11: qwen2vl.attention.head_count_kv u32 = 2
+llama_model_loader: - kv 12: qwen2vl.rope.freq_base f32 = 1000000.000000
+llama_model_loader: - kv 13: qwen2vl.attention.layer_norm_rms_epsilon f32 = 0.000001
+llama_model_loader: - kv 14: qwen2vl.rope.dimension_sections arr[i32,4] = [16, 24, 24, 0]
+llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
+llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2
+llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
+llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
+llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
+llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
+llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643
+llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643
+llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
+llama_model_loader: - kv 24: tokenizer.chat_template str = {% set image_count = namespace(value=...
+llama_model_loader: - kv 25: general.quantization_version u32 = 2
+llama_model_loader: - kv 26: general.file_type u32 = 17
+llama_model_loader: - type f32: 181 tensors
+llama_model_loader: - type q5_K: 216 tensors
+llama_model_loader: - type q6_K: 37 tensors
+print_info: file format = GGUF V3 (latest)
+print_info: file type = Q5_K - Medium
+print_info: file size = 2.07 GiB (5.75 BPW)
+load: printing all EOG tokens:
+load: - 151643 ('<|endoftext|>')
+load: - 151645 ('<|im_end|>')
+load: - 151662 ('<|fim_pad|>')
+load: - 151663 ('<|repo_name|>')
+load: - 151664 ('<|file_sep|>')
+load: special tokens cache size = 22
+load: token to piece cache size = 0.9310 MB
+print_info: arch = qwen2vl
+print_info: vocab_only = 0
+print_info: n_ctx_train = 128000
+print_info: n_embd = 2048
+print_info: n_embd_inp = 2048
+print_info: n_layer = 36
+print_info: n_head = 16
+print_info: n_head_kv = 2
+print_info: n_rot = 128
+print_info: n_swa = 0
+print_info: is_swa_any = 0
+print_info: n_embd_head_k = 128
+print_info: n_embd_head_v = 128
+print_info: n_gqa = 8
+print_info: n_embd_k_gqa = 256
+print_info: n_embd_v_gqa = 256
+print_info: f_norm_eps = 0.0e+00
+print_info: f_norm_rms_eps = 1.0e-06
+print_info: f_clamp_kqv = 0.0e+00
+print_info: f_max_alibi_bias = 0.0e+00
+print_info: f_logit_scale = 0.0e+00
+print_info: f_attn_scale = 0.0e+00
+print_info: n_ff = 11008
+print_info: n_expert = 0
+print_info: n_expert_used = 0
+print_info: n_expert_groups = 0
+print_info: n_group_used = 0
+print_info: causal attn = 1
+print_info: pooling type = -1
+print_info: rope type = 8
+print_info: rope scaling = linear
+print_info: freq_base_train = 1000000.0
+print_info: freq_scale_train = 1
+print_info: n_ctx_orig_yarn = 128000
+print_info: rope_finetuned = unknown
+print_info: mrope sections = [16, 24, 24, 0]
+print_info: model type = 3B
+print_info: model params = 3.09 B
+print_info: general.name = Qwen2.5 VL 3B Instruct
+print_info: vocab type = BPE
+print_info: n_vocab = 151936
+print_info: n_merges = 151387
+print_info: BOS token = 151643 '<|endoftext|>'
+print_info: EOS token = 151645 '<|im_end|>'
+print_info: EOT token = 151645 '<|im_end|>'
+print_info: PAD token = 151643 '<|endoftext|>'
+print_info: LF token = 198 'Ċ'
+print_info: FIM PRE token = 151659 '<|fim_prefix|>'
+print_info: FIM SUF token = 151661 '<|fim_suffix|>'
+print_info: FIM MID token = 151660 '<|fim_middle|>'
+print_info: FIM PAD token = 151662 '<|fim_pad|>'
+print_info: FIM REP token = 151663 '<|repo_name|>'
+print_info: FIM SEP token = 151664 '<|file_sep|>'
+print_info: EOG token = 151643 '<|endoftext|>'
+print_info: EOG token = 151645 '<|im_end|>'
+print_info: EOG token = 151662 '<|fim_pad|>'
+print_info: EOG token = 151663 '<|repo_name|>'
+print_info: EOG token = 151664 '<|file_sep|>'
+print_info: max token length = 256
+load_tensors: loading model tensors, this can take a while... (mmap = true)
+load_tensors: CPU_Mapped model buffer size = 2116.07 MiB
+..........................................................................................
+llama_context: constructing llama_context
+llama_context: n_seq_max = 1
+llama_context: n_ctx = 4096
+llama_context: n_ctx_seq = 4096
+llama_context: n_batch = 2048
+llama_context: n_ubatch = 512
+llama_context: causal_attn = 1
+llama_context: flash_attn = auto
+llama_context: kv_unified = false
+llama_context: freq_base = 1000000.0
+llama_context: freq_scale = 1
+llama_context: n_ctx_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized
+llama_context: CPU output buffer size = 0.58 MiB
+llama_kv_cache: CPU KV buffer size = 144.00 MiB
+llama_kv_cache: size = 144.00 MiB ( 4096 cells, 36 layers, 1/1 seqs), K (f16): 72.00 MiB, V (f16): 72.00 MiB
+llama_context: Flash Attention was auto, set to enabled
+llama_context: CPU compute buffer size = 304.75 MiB
+llama_context: graph nodes = 1231
+llama_context: graph splits = 1
+common_init_from_params: added <|endoftext|> logit bias = -inf
+common_init_from_params: added <|im_end|> logit bias = -inf
+common_init_from_params: added <|fim_pad|> logit bias = -inf
+common_init_from_params: added <|repo_name|> logit bias = -inf
+common_init_from_params: added <|file_sep|> logit bias = -inf
+common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
+common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
+mtmd_cli_context: chat template example:
+<|im_start|>system
+You are a helpful assistant<|im_end|>
+<|im_start|>user
+Hello<|im_end|>
+<|im_start|>assistant
+Hi there<|im_end|>
+<|im_start|>user
+How are you?<|im_end|>
+<|im_start|>assistant
+
+clip_model_loader: model name: Qwen2.5 VL 3B Instruct
+clip_model_loader: description:
+clip_model_loader: GGUF version: 3
+clip_model_loader: alignment: 32
+clip_model_loader: n_tensors: 519
+clip_model_loader: n_kv: 22
+
+clip_model_loader: has vision encoder
+clip_ctx: CLIP using CPU backend
+load_hparams: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks
+load_hparams: if you encounter problems with accuracy, try adding --image-min-tokens 1024
+load_hparams: more info: https://github.com/ggml-org/llama.cpp/issues/16842
+
+load_hparams: projector: qwen2.5vl_merger
+load_hparams: n_embd: 1280
+load_hparams: n_head: 16
+load_hparams: n_ff: 3420
+load_hparams: n_layer: 32
+load_hparams: ffn_op: silu
+load_hparams: projection_dim: 2048
+
+--- vision hparams ---
+load_hparams: image_size: 560
+load_hparams: patch_size: 14
+load_hparams: has_llava_proj: 0
+load_hparams: minicpmv_version: 0
+load_hparams: n_merge: 2
+load_hparams: n_wa_pattern: 8
+load_hparams: image_min_pixels: 6272
+load_hparams: image_max_pixels: 3211264
+
+load_hparams: model size: 1276.39 MiB
+load_hparams: metadata size: 0.18 MiB
+alloc_compute_meta: warmup with image size = 1288 x 1288
+alloc_compute_meta: CPU compute buffer size = 732.56 MiB
+alloc_compute_meta: graph splits = 1, nodes = 1092
+warmup: flash attention is enabled
+main: loading model: ./Qwen2.5-VL-3B-Instruct/Qwen2.5-VL-3B-Instruct-Q5_K_M.gguf
+encoding image slice...
+image slice encoded in 8425 ms
+decoding image batch 1/1, n_tokens_batch = 361
+image decoded (batch 1/1) in 13109 ms
+
+The image depicts a single, delicate rose with a soft pink hue, resting on a dark, possibly marble, surface. The rose is positioned near a window, which has a dark frame. The window appears to be letting in some light, creating a contrast between the illuminated rose and the darker surroundings. The overall scene has a serene and somewhat melancholic atmosphere, with the rose being the central focus.
+
+
+llama_perf_context_print: load time = 497.68 ms
+llama_perf_context_print: prompt eval time = 22189.23 ms / 375 tokens ( 59.17 ms per token, 16.90 tokens per second)
+llama_perf_context_print: eval time = 9434.97 ms / 80 runs ( 117.94 ms per token, 8.48 tokens per second)
+llama_perf_context_print: total time = 31913.30 ms / 455 tokens
+llama_perf_context_print: graphs reused = 0
+```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2vl-2b.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2vl-2b.mdx
new file mode 100644
index 000000000..ed09d981d
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_qwen2vl-2b.mdx
@@ -0,0 +1,306 @@
+**Qwen2-VL** is an open-source multimodal vision-language model series developed by Alibaba Cloud's Tongyi Qianwen team. This series achieves deep fusion between unified visual encoders and large language model foundations, aiming to provide powerful image understanding, fine-grained reasoning, and open-world dialogue capabilities.
+
+- **Key Features**: The series models generally possess efficient visual-semantic alignment capabilities, supporting precise image content description, complex Q&A, logical reasoning, and multi-turn interactions. Their architecture balances performance and efficiency, showing broad application potential in document analysis, intelligent assistants, and multimodal search scenarios.
+- **Version Note**: This model Qwen2-VL-2B-Instruct is a lightweight practice version of the series with approximately 2 billion parameters, optimized through instruction fine-tuning for deployment in edge and low-resource environments, enabling real-time multimodal interaction.
+
+## Environment Setup
+
+Refer to the [llama.cpp](../../../../orion/o6/app-development/artificial-intelligence/llama_cpp.md) documentation to prepare the llama.cpp tools.
+
+## Quick Start
+
+### Download Model
+
+
+
+```bash
+pip3 install modelscope
+cd llama.cpp
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE mmproj-Qwen2-VL-2b-Instruct-F16.gguf --local_dir ./
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE Qwen2-VL-2B-Instruct-Q5_K_M.gguf --local_dir ./
+modelscope download --model radxa/Qwen2-VL-2B-Instruct-NOE test.png --local_dir ./
+```
+
+
+
+### Run Model
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./mmproj-Qwen2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./test.png
+```
+
+
+
+## Complete Conversion Workflow
+
+### Clone Model Repository
+
+
+
+```bash
+cd llama.cpp
+git clone https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
+```
+
+
+
+### Create Virtual Environment
+
+
+
+```bash
+python3 -m venv .venv
+source .venv/bin/activate
+pip3 install -r requirements.txt
+```
+
+
+
+### Model Conversion
+
+#### Convert Text Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py ./Qwen2-VL-2B-Instruct
+```
+
+
+
+#### Convert Vision Module
+
+
+
+```bash
+python3 ./convert_hf_to_gguf.py --mmproj ./Qwen2-VL-2B-Instruct
+```
+
+
+
+### Model Quantization
+
+Here we use Q5_K_M quantization.
+
+
+
+```bash
+./build/bin/llama-quantize ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-F16.gguf ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf Q5_K_M
+```
+
+
+
+### Model Test
+
+
+

+
+ Model test input
+
+
+
+
+
+```bash
+./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2-VL-2B-Instruct/mmproj-Qwen2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2-VL-2B-Instruct/test.png
+```
+
+
+
+Model output:
+
+```bash
+$ ./build/bin/llama-mtmd-cli -m ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf --mmproj ./Qwen2-VL-2B-Instruct/mmproj-Qwen
+2-VL-2b-Instruct-F16.gguf -p "Describe this image." --image ./Qwen2-VL-2B-Instruct/test.png
+build: 7110 (3ae282a06) with cc (Debian 12.2.0-14+deb12u1) 12.2.0 for aarch64-linux-gnu
+llama_model_loader: loaded meta data with 33 key-value pairs and 338 tensors from ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf (version GGUF V3 (latest))
+llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
+llama_model_loader: - kv 0: general.architecture str = qwen2vl
+llama_model_loader: - kv 1: general.type str = model
+llama_model_loader: - kv 2: general.name str = Qwen2 VL 2B Instruct
+llama_model_loader: - kv 3: general.finetune str = Instruct
+llama_model_loader: - kv 4: general.basename str = Qwen2-VL
+llama_model_loader: - kv 5: general.size_label str = 2B
+llama_model_loader: - kv 6: general.license str = apache-2.0
+llama_model_loader: - kv 7: general.base_model.count u32 = 1
+llama_model_loader: - kv 8: general.base_model.0.name str = Qwen2 VL 2B
+llama_model_loader: - kv 9: general.base_model.0.organization str = Qwen
+llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-VL-2B
+llama_model_loader: - kv 11: general.tags arr[str,2] = ["multimodal", "image-text-to-text"]
+llama_model_loader: - kv 12: general.languages arr[str,1] = ["en"]
+llama_model_loader: - kv 13: qwen2vl.block_count u32 = 28
+llama_model_loader: - kv 14: qwen2vl.context_length u32 = 32768
+llama_model_loader: - kv 15: qwen2vl.embedding_length u32 = 1536
+llama_model_loader: - kv 16: qwen2vl.feed_forward_length u32 = 8960
+llama_model_loader: - kv 17: qwen2vl.attention.head_count u32 = 12
+llama_model_loader: - kv 18: qwen2vl.attention.head_count_kv u32 = 2
+llama_model_loader: - kv 19: qwen2vl.rope.freq_base f32 = 1000000.000000
+llama_model_loader: - kv 20: qwen2vl.attention.layer_norm_rms_epsilon f32 = 0.000001
+llama_model_loader: - kv 21: qwen2vl.rope.dimension_sections arr[i32,4] = [16, 24, 24, 0]
+llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
+llama_model_loader: - kv 23: tokenizer.ggml.pre str = qwen2
+llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
+llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
+llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
+llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 151645
+llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 151643
+llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 151643
+llama_model_loader: - kv 30: tokenizer.chat_template str = {% set image_count = namespace(value=...
+llama_model_loader: - kv 31: general.quantization_version u32 = 2
+llama_model_loader: - kv 32: general.file_type u32 = 17
+llama_model_loader: - type f32: 141 tensors
+llama_model_loader: - type q5_K: 168 tensors
+llama_model_loader: - type q6_K: 29 tensors
+print_info: file format = GGUF V3 (latest)
+print_info: file type = Q5_K - Medium
+print_info: file size = 1.04 GiB (5.80 BPW)
+load: printing all EOG tokens:
+load: - 151643 ('<|endoftext|>')
+load: - 151645 ('<|im_end|>')
+load: special tokens cache size = 14
+load: token to piece cache size = 0.9309 MB
+print_info: arch = qwen2vl
+print_info: vocab_only = 0
+print_info: n_ctx_train = 32768
+print_info: n_embd = 1536
+print_info: n_embd_inp = 1536
+print_info: n_layer = 28
+print_info: n_head = 12
+print_info: n_head_kv = 2
+print_info: n_rot = 128
+print_info: n_swa = 0
+print_info: is_swa_any = 0
+print_info: n_embd_head_k = 128
+print_info: n_embd_head_v = 128
+print_info: n_gqa = 6
+print_info: n_embd_k_gqa = 256
+print_info: n_embd_v_gqa = 256
+print_info: f_norm_eps = 0.0e+00
+print_info: f_norm_rms_eps = 1.0e-06
+print_info: f_clamp_kqv = 0.0e+00
+print_info: f_max_alibi_bias = 0.0e+00
+print_info: f_logit_scale = 0.0e+00
+print_info: f_attn_scale = 0.0e+00
+print_info: n_ff = 8960
+print_info: n_expert = 0
+print_info: n_expert_used = 0
+print_info: n_expert_groups = 0
+print_info: n_group_used = 0
+print_info: causal attn = 1
+print_info: pooling type = -1
+print_info: rope type = 8
+print_info: rope scaling = linear
+print_info: freq_base_train = 1000000.0
+print_info: freq_scale_train = 1
+print_info: n_ctx_orig_yarn = 32768
+print_info: rope_finetuned = unknown
+print_info: mrope sections = [16, 24, 24, 0]
+print_info: model type = 1.5B
+print_info: model params = 1.54 B
+print_info: general.name = Qwen2 VL 2B Instruct
+print_info: vocab type = BPE
+print_info: n_vocab = 151936
+print_info: n_merges = 151387
+print_info: BOS token = 151643 '<|endoftext|>'
+print_info: EOS token = 151645 '<|im_end|>'
+print_info: EOT token = 151645 '<|im_end|>'
+print_info: PAD token = 151643 '<|endoftext|>'
+print_info: LF token = 198 'Ċ'
+print_info: EOG token = 151643 '<|endoftext|>'
+print_info: EOG token = 151645 '<|im_end|>'
+print_info: max token length = 256
+load_tensors: loading model tensors, this can take a while... (mmap = true)
+load_tensors: CPU_Mapped model buffer size = 1067.26 MiB
+....................................................................................
+llama_context: constructing llama_context
+llama_context: n_seq_max = 1
+llama_context: n_ctx = 4096
+llama_context: n_ctx_seq = 4096
+llama_context: n_batch = 2048
+llama_context: n_ubatch = 512
+llama_context: causal_attn = 1
+llama_context: flash_attn = auto
+llama_context: kv_unified = false
+llama_context: freq_base = 1000000.0
+llama_context: freq_scale = 1
+llama_context: n_ctx_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
+llama_context: CPU output buffer size = 0.58 MiB
+llama_kv_cache: CPU KV buffer size = 112.00 MiB
+llama_kv_cache: size = 112.00 MiB ( 4096 cells, 28 layers, 1/1 seqs), K (f16): 56.00 MiB, V (f16): 56.00 MiB
+llama_context: Flash Attention was auto, set to enabled
+llama_context: CPU compute buffer size = 302.75 MiB
+llama_context: graph nodes = 959
+llama_context: graph splits = 1
+common_init_from_params: added <|endoftext|> logit bias = -inf
+common_init_from_params: added <|im_end|> logit bias = -inf
+common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
+common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
+mtmd_cli_context: chat template example:
+<|im_start|>system
+You are a helpful assistant<|im_end|>
+<|im_start|>user
+Hello<|im_end|>
+<|im_start|>assistant
+Hi there<|im_end|>
+<|im_start|>user
+How are you?<|im_end|>
+<|im_start|>assistant
+
+clip_model_loader: model name: Qwen2 VL 2B Instruct
+clip_model_loader: description:
+clip_model_loader: GGUF version: 3
+clip_model_loader: alignment: 32
+clip_model_loader: n_tensors: 520
+clip_model_loader: n_kv: 27
+
+clip_model_loader: has vision encoder
+clip_ctx: CLIP using CPU backend
+load_hparams: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks
+load_hparams: if you encounter problems with accuracy, try adding --image-min-tokens 1024
+load_hparams: more info: https://github.com/ggml-org/llama.cpp/issues/16842
+
+load_hparams: projector: qwen2vl_merger
+load_hparams: n_embd: 1280
+load_hparams: n_head: 16
+load_hparams: n_ff: 1536
+load_hparams: n_layer: 32
+load_hparams: ffn_op: gelu_quick
+load_hparams: projection_dim: 1536
+
+--- vision hparams ---
+load_hparams: image_size: 560
+load_hparams: patch_size: 14
+load_hparams: has_llava_proj: 0
+load_hparams: minicpmv_version: 0
+load_hparams: n_merge: 2
+load_hparams: n_wa_pattern: 0
+load_hparams: image_min_pixels: 6272
+load_hparams: image_max_pixels: 3211264
+
+load_hparams: model size: 1269.94 MiB
+load_hparams: metadata size: 0.18 MiB
+alloc_compute_meta: warmup with image size = 1288 x 1288
+alloc_compute_meta: CPU compute buffer size = 267.08 MiB
+alloc_compute_meta: graph splits = 1, nodes = 1085
+warmup: flash attention is enabled
+main: loading model: ./Qwen2-VL-2B-Instruct/Qwen2-VL-2B-Instruct-Q5_K_M.gguf
+encoding image slice...
+image slice encoded in 11683 ms
+decoding image batch 1/1, n_tokens_batch = 361
+image decoded (batch 1/1) in 6250 ms
+
+The image depicts a single rose placed on a marble surface, likely a table or a shelf. The rose is positioned in such a way that it is slightly tilted, with its petals facing upwards. The background features a dark, possibly stone or marble, wall with a textured surface, and a window or mirror reflecting the surroundings. The overall composition of the image creates a serene and elegant atmosphere.
+
+
+llama_perf_context_print: load time = 416.66 ms
+llama_perf_context_print: prompt eval time = 18253.30 ms / 375 tokens ( 48.68 ms per token, 20.54 tokens per second)
+llama_perf_context_print: eval time = 5283.83 ms / 78 runs ( 67.74 ms per token, 14.76 tokens per second)
+llama_perf_context_print: total time = 23892.18 ms / 453 tokens
+llama_perf_context_print: graphs reused = 0
+```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_real-esrgan.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_real-esrgan.mdx
new file mode 100644
index 000000000..e442f46bd
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_real-esrgan.mdx
@@ -0,0 +1,141 @@
+**Real-ESRGAN** is a super-resolution algorithm developed by Tencent ARC Lab designed to restore real-world complex degraded images. It improves traditional GAN training methods by using second-order degradation models to simulate blur, noise, and compression artifacts in real images, enabling natural reconstruction of low-quality images.
+
+- **Key Features**: Supports extremely high-quality image detail enhancement and artifact removal, significantly improving low-resolution image clarity while restoring texture quality. Widely used in old photo restoration, video enhancement, anime upscaling, and security image analysis.
+- **Version Note**: This case uses the Real-ESRGAN_x4plus model. As the most generalized version in this family, it is specifically optimized for various unknown degradations in real-world scenarios. While maintaining the classic RRDB architecture, it achieves excellent balance between image clarity and visual realism through deeper feature extraction capabilities, making it the preferred solution for general image upscaling and restoration tasks.
+
+:::info[Environment Setup]
+Configure the required environment in advance.
+
+- [Environment Setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick Start
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Super_Resolution/onnx_real_esrgan
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Super_Resolution/onnx_real_esrgan/real_esrgan.cix
+```
+
+
+
+### Model Testing
+
+:::info
+Activate the virtual environment before running!
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Complete Conversion Workflow
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Super_Resolution/onnx_real_esrgan/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Super_Resolution/onnx_real_esrgan/model/realesrgan-x4.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Super_Resolution/onnx_real_esrgan/model/RealESRGAN_x4plus.pth
+```
+
+
+
+### Project Structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── pytorch2onnx_x4.py
+├── README.md
+├── real_esrgan.cix
+└── test_data
+```
+
+### Perform Model Quantization and Conversion
+
+
+
+```bash
+cd ..
+cixbuild cfg/onnx_realesrganbuild.cfg
+```
+
+
+
+:::info[Push to Board]
+After completing the model conversion, push the cix model file to the board.
+:::
+
+### Test Host Inference
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Model Inference Results
+
+
+
+{" "}
+
+

+
+
+
+### Deploy to NPU
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Model Runtime Results
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+
+{" "}
+
+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_resnet50.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_resnet50.mdx
index b5a2295c9..20bee5457 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_resnet50.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_resnet50.mdx
@@ -1,175 +1,150 @@
-This document explains how to use the CIX P1 NPU SDK to convert [ResNet50](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet50-v1-12.onnx) into a model that can run on CIX SOC NPU.
+**ResNet** is a milestone deep convolutional neural network architecture proposed by Microsoft Research. It perfectly solves the gradient vanishing problem in deep networks through its pioneering residual learning mechanism using "skip connections," completely breaking the limitations on model depth in deep learning.
-There are four main steps:
-:::tip
-Steps 1-3 should be executed in a Linux environment on an x86 host
-:::
+- **Key Features**: Focuses on high-precision image feature extraction and classification tasks. Its powerful universal feature representation capabilities make it the most commonly used backbone architecture for complex vision tasks such as object detection and semantic segmentation.
+- **Version Note**: This case uses ResNet-50 (V1). As the most representative mid-range force in the ResNet family, it consists of a 50-layer deep network and adopts an efficient bottleneck structure. It achieves perfect balance between computational complexity and recognition accuracy, making it the most widely deployed classic vision model in industry with both high performance and high stability.
-1. Download the NPU SDK and install NOE Compiler
-2. Download model files (code and scripts)
-3. Compile the model
-4. Deploy the model to Orion O6 / O6N
+:::info[Environment Setup]
+Configure the required environment in advance.
-## Download NPU SDK and Install NOE Compiler
+- [Environment Setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
-Please refer to [Install NPU SDK](./npu-introduction) to install the NPU SDK and NOE Compiler.
+## Quick Start
-## Download Model Files
+### Download Model Files
-The CIX AI Model Hub contains all the necessary files for ResNet50. Please download them according to [Download CIX AI Model Hub](./ai-hub), then navigate to the corresponding directory.
+
```bash
-cd ai_model_hub/models/ComputeVision/Image_Classification/onnx_resnet_v1_50
+cd ai_model_hub_25_Q3/models/ComputeVision/Image_Classification/onnx_resnet_v1_50
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_resnet_v1_50/resnet_v1_50.cix
```
-Please confirm that the directory structure matches the following:
+
-```bash
-.
-├── cfg
-│ └── onnx_resnet_v1_50build.cfg
-├── datasets
-│ └── calib_data.npy
-├── graph.json
-├── inference_npu.py
-├── inference_onnx.py
-├── ReadMe.md
-├── test_data
-│ ├── ILSVRC2012_val_00002899.JPEG
-│ ├── ILSVRC2012_val_00004704.JPEG
-│ ├── ILSVRC2012_val_00021564.JPEG
-└── Tutorials.ipynb
-```
+### Model Testing
-## Compile the Model
+:::info
+Activate the virtual environment before running!
+:::
-:::tip
-Users don't need to compile the model from scratch. Radxa provides a pre-compiled resnet_v1_50.cix model (which can be downloaded using the command below). If you use the pre-compiled model, you can skip the "Compile the Model" step.
+
```bash
-wget https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Image_Classification/onnx_resnet_v1_50/resnet_v1_50.cix
+python3 inference_npu.py
```
-:::
+
-### Prepare ONNX Model
+## Complete Conversion Workflow
-- Download the ONNX model
+### Download Model Files
- [resnet50-v1-12.onnx](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet50-v1-12.onnx)
+
-- Simplify the model
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Image_Classification/onnx_resnet_v1_50/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_resnet_v1_50/model/resnet50-v1-12.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Image_Classification/onnx_resnet_v1_50/model/resnet50-v1-12-sim.onnx
+```
- Here we use onnxsim to fix the model input shape and simplify the model
+
- ```bash
- pip3 install onnxsim onnxruntime
- onnxsim resnet50-v1-12.onnx resnet50-v1-12-sim.onnx --overwrite-input-shape 1,3,224,224
- ```
+### Project Structure
-### Compile the Model
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── resnet_v1_50.cix
+├── test_data
+├── label.txt
+├── main.cpp
+├── makefile
+├── noe_utils
+└── Tutorials.ipynb
+```
-CIX SOC NPU supports INT8 computation. Before compiling the model, we need to use NOE Compiler to quantize the model to INT8.
+### Perform Model Quantization and Conversion
-- Prepare the calibration dataset
+
- - Prepare your own calibration dataset
+```bash
+cd ..
+cixbuild cfg/onnx_resnet_v1_50build.cfg
+```
- The `test_data` directory already contains several image files for calibration
+
- Refer to the following script to generate the calibration file
+:::info[Push to Board]
+After completing the model conversion, push the cix model file to the board.
+:::
- ```python
- import sys
- import os
- import numpy as np
- _abs_path = os.path.join(os.getcwd(), "../../../../")
- sys.path.append(_abs_path)
- from utils.image_process import imagenet_preprocess_method1
+### Test Host Inference
- from utils.tools import get_file_list
- # Get a list of images from the provided path
- images_path = "test_data"
- images_list = get_file_list(images_path)
- data = []
- for image_path in images_list:
- input = imagenet_preprocess_method1(image_path)
- data.append(input)
- # concat the data and save calib dataset
- data = np.concatenate(data, axis=0)
- print(data.shape)
- np.save("datasets/calib_data_tmp.npy", data)
- print("Generate calib dataset success.")
- ```
+#### Run Inference Script
- - Quantize and compile the model using NOE Compiler
+
- - Create a configuration file for quantization and compilation, refer to the following configuration
+```bash
+python3 inference_onnx.py --images test_data --onnx_path model/resnet50-v1-12-sim.onnx
+```
- ```bash
- [Common]
- mode = build
+
- [Parser]
- model_type = onnx
- model_name = resnet_v1_50
- detection_postprocess =
- model_domain = image_classification
- input_model = ./resnet50-v1-12-sim.onnx
- output_dir = ./
- input_shape = [1, 3, 224, 224]
- input = data
+#### Model Inference Results
- [Optimizer]
- output_dir = ./
- calibration_data = datasets/calib_data_tmp.npy
- calibration_batch_size = 16
- dataset = numpydataset
- save_statistic_info = True
- cast_dtypes_for_lib = True
- global_calibration = adaround[10, 10, 32, 0.01]
+
- [GBuilder]
- target = X2_1204MP3
- outputs = resnet_v1_50.cix
- tiling = fps
- profile = True
- ```
+```bash
+$ python3 inference_onnx.py --images test_data --onnx_path model/resnet50-v1-12-sim.onnx
+image path : test_data/ILSVRC2012_val_00024154.JPEG
+Ibizan hound, Ibizan Podenco
+image path : test_data/ILSVRC2012_val_00021564.JPEG
+coucal
+image path : test_data/ILSVRC2012_val_00002899.JPEG
+rock python, rock snake, Python sebae
+image path : test_data/ILSVRC2012_val_00045790.JPEG
+Yorkshire terrier
+image path : test_data/ILSVRC2012_val_00037133.JPEG
+ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
+```
- - Compile the model
- :::tip
- If you encounter the cixbuild error: `[E] Optimizing model failed! CUDA error: no kernel image is available for execution on the device ...`
- This means the current version of torch doesn't support this GPU. Please completely uninstall the current version of torch, then download the latest version from the official torch website.
- :::
- ```bash
- cixbuild ./onnx_resnet_v1_50build.cfg
- ```
+
-## Model Deployment
+### Deploy to NPU
-### NPU Inference
+#### Run Inference Script
-Copy the compiled .cix model to Orion O6 / O6N for model validation
+
```bash
-python3 inference_npu.py --images test_data --model_path ./resnet_v1_50.cix
+python3 inference_npu.py --images test_data --model_path resnet_v1_50.cix
```
+
+
+#### Model Inference Results
+
+
+
```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Image_Classification/onnx_resnet_v1_50$ time python3 inference_npu.py --images test_data --model_path ./resnet_v1_50.cix
+$ python3 inference_npu.py --images test_data --model_path resnet_v1_50.cix
npu: noe_init_context success
npu: noe_load_graph success
Input tensor count is 1.
Output tensor count is 1.
npu: noe_create_job success
-image path : test_data/ILSVRC2012_val_00004704.JPEG
-plunger, plumber's helper
+image path : test_data/ILSVRC2012_val_00037133.JPEG
+ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
image path : test_data/ILSVRC2012_val_00021564.JPEG
coucal
image path : test_data/ILSVRC2012_val_00024154.JPEG
Ibizan hound, Ibizan Podenco
-image path : test_data/ILSVRC2012_val_00037133.JPEG
-ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
image path : test_data/ILSVRC2012_val_00002899.JPEG
rock python, rock snake, Python sebae
image path : test_data/ILSVRC2012_val_00045790.JPEG
@@ -177,42 +152,6 @@ Yorkshire terrier
npu: noe_clean_job success
npu: noe_unload_graph success
npu: noe_deinit_context success
-
-real 0m2.963s
-user 0m3.266s
-sys 0m0.414s
-```
-
-### CPU Inference
-
-Use CPU to perform inference on the ONNX model for validation. This can be run on either an x86 host or Orion O6 / O6N
-
-```bash
-python3 inference_onnx.py --images test_data --onnx_path ./resnet50-v1-12-sim.onnx
```
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Image_Classification/onnx_resnet_v1_50$ time python3 inference_onnx.py --images test_data --onnx_path ./resnet50-v1-12-sim.onnx
-image path : test_data/ILSVRC2012_val_00004704.JPEG
-plunger, plumber's helper
-image path : test_data/ILSVRC2012_val_00021564.JPEG
-coucal
-image path : test_data/ILSVRC2012_val_00024154.JPEG
-Ibizan hound, Ibizan Podenco
-image path : test_data/ILSVRC2012_val_00037133.JPEG
-ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
-image path : test_data/ILSVRC2012_val_00002899.JPEG
-rock python, rock snake, Python sebae
-image path : test_data/ILSVRC2012_val_00045790.JPEG
-Yorkshire terrier
-
-real 0m3.757s
-user 0m11.789s
-sys 0m0.396s
-```
-
-The inference results are consistent between NPU and CPU, but the running speed is significantly faster on NPU
-
-## Reference Documents
-
-Paper: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_scrfd-arcface.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_scrfd-arcface.mdx
new file mode 100644
index 000000000..260d13045
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_scrfd-arcface.mdx
@@ -0,0 +1,191 @@
+**SCRFD-ArcFace** is a deep learning solution that integrates efficient face detection with high-accuracy feature extraction. It combines the SCRFD detector (with strong multi-scale modeling capability) and the ArcFace recognition model (based on cosine-margin loss), enabling a complete visual pipeline from complex scene capture to accurate identity matching.
+
+- Key features: Supports ultra-fast face localization and keypoint regression, with strong feature discriminability and robustness to interference. It is widely used in finance-grade identity verification, smart security, contactless attendance, and large-scale face search.
+- Version notes: This example uses the integrated SCRFD-ArcFace architecture. SCRFD maintains efficient detection performance across different compute platforms through optimized resource allocation, while ArcFace improves recognition accuracy by enhancing inter-class separation in the embedding space. This combination is a benchmark choice that balances robustness and production performance for real-time face recognition.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/arcface.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/scrfd.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py --det_model_path ./scrfd.cix --rec_model_path ./arcface.cix --faces-dir ./datasets/faces --image_path test_data
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model/det_10g.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model/det_2_5g.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model/det_500m.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model/w600k_mbf.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Face_Recognition/onnx_scrfd_arcface/model/w600k_r50.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── model
+├── test_data
+├── arcface.cix
+├── arcface_npu.py
+├── arcface_onnx.py
+├── scrfd.cix
+├── scrfd_npu.py
+├── scrfd_onnx.py
+├── inference_npu.py
+├── inference_onnx.py
+├── helpers.py
+├── ReadMe.md
+└── requirements.txt
+```
+
+### Quantize and convert the model
+
+#### Convert the SCRFD model
+
+
+
+```bash
+cd ..
+cixbuild cfg/onnx_scrfdbuild.cfg
+```
+
+
+
+#### Convert the ArcFace model
+
+
+
+```bash
+cixbuild cfg/onnx_arcfacebuild.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py --det_onnx_path ./model/det_10g.onnx --rec_onnx_path ./model/w600k_r50.onnx --faces-dir ./datasets/faces --image_path test_data
+```
+
+
+
+#### Inference output
+
+
+
+{" "}
+
+

+

+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py --det_model_path ./scrfd.cix --rec_model_path ./arcface.cix --faces-dir ./datasets/faces --image_path test_data
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py --det_model_path ./scrfd.cix --rec_model_path ./arcface.cix --faces-dir ./datasets/faces --image_path test_data
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 9.
+npu: noe_create_job success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+./datasets/faces/Monica.png
+./datasets/faces/Phoebe.png
+./datasets/faces/Rachel.png
+./datasets/faces/Chandler.png
+./datasets/faces/Joey.png
+./datasets/faces/Ross.png
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+
+{" "}
+
+

+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_sd-v1-4.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_sd-v1-4.mdx
new file mode 100644
index 000000000..ae520492e
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_sd-v1-4.mdx
@@ -0,0 +1,250 @@
+**Stable Diffusion** is a text-to-image model based on latent diffusion. By compressing images into a low-dimensional latent space for denoising training, it reduces the heavy compute requirements of generative AI and makes it possible to generate high-quality, artistic images on consumer-grade GPUs.
+
+- Key features: Supports text-to-image generation, image-to-image (understanding and re-rendering), and inpainting. It can generate visually compelling artwork from natural-language prompts.
+- Version notes: This example uses Stable Diffusion v1.4. As the first industrial-grade mainstream version in the series, it was deeply pre-trained on hundreds of millions of image-text pairs and has strong aesthetic expression and instruction following. It offers an excellent balance between output quality and VRAM usage, and remains one of the most widely supported models in the generative AI ecosystem.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/decoder.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/default_seed.npy
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/encoder.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/uncondition.npy
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/unet.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/model/decoder
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/model/decoder/decoder.onnx
+cd ../encoder
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/model/encoder/encoder.onnx
+cd ../unet
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/model/unet/unet.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Generative_AI/Text_to_Image/onnx_stable_diffusion_v1_4/model/unet/weights.pb
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── decoder.cix
+├── default_seed.npy
+├── encoder.cix
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── tokenizer
+├── uncondition.npy
+└── unet.cix
+```
+
+### Quantize and convert the model
+
+#### Convert the text encoder
+
+
+
+```bash
+cd ../..
+cixbuild cfg/encoder/encoderbuild.cfg
+```
+
+
+
+#### Convert the U-Net network
+
+
+
+```bash
+cixbuild cfg/unet/unetbuild.cfg
+```
+
+
+
+#### Convert the VAE decoder
+
+
+
+```bash
+cixbuild cfg/decoder/decoderbuild.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_onnx.py
+please input prompt text: majestic crystal mountains under aurora borealis, fantasy landscape, trending on artstation
+using unified predictor-corrector with order 1 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+do not run corrector at the last step
+using unified predictor-corrector with order 1 (solver type: B(h))
+Decoder:
+SD time : 56.92895817756653
+```
+
+
+
+#### Generated image
+
+
+
+

+
+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Runtime output
+
+
+
+```bash
+$ python3 inference_npu.py
+please input prompt text: a single wilting rose on a marble table, cinematic lighting, moody atmosphere
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 3.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 1 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+using unified predictor-corrector with order 2 (solver type: B(h))
+using corrector
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+do not run corrector at the last step
+using unified predictor-corrector with order 1 (solver type: B(h))
+Decoder:
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+SD time : 20.26415753364563
+```
+
+
+
+#### Generated image
+
+
+
+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ultra-fast-lane-detection-v2.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ultra-fast-lane-detection-v2.mdx
new file mode 100644
index 000000000..fddd1661d
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_ultra-fast-lane-detection-v2.mdx
@@ -0,0 +1,143 @@
+**Ultra Fast Lane Detection (UFLD)** is a class of ultra-fast deep learning algorithms focused on lane detection. It changes the traditional pixel-level segmentation approach by introducing an innovative row-based selection classification mechanism, transforming the detection task into a simple classification problem, greatly improving model runtime speed.
+
+- **Key Features**: Focuses on real-time lane detection in road scenarios, capable of quickly and accurately outlining lane boundaries, providing core visual support for autonomous driving systems' lane keeping assistance (LKA) and lane departure warning (LDW).
+- **Version Note**: This case uses the Ultra Fast Lane Detection V2 (UFLDv2) model. As an advanced version of this series, it introduces a hybrid anchor mechanism that not only enhances detection robustness for curves and complex occlusion scenarios but also maintains the series' consistent ultra-fast inference advantages. It further improves spatial structure capture capabilities while ensuring low latency, making it the current mainstream balanced choice for efficient real-time lane perception on in-vehicle embedded endpoints.
+
+:::info[Environment Setup]
+Configure the required environment in advance.
+
+- [Environment Setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick Start
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Lane_Detection/onnx_Ultra_Fast_Lane_Detection_v2
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Lane_Detection/onnx_Ultra_Fast_Lane_Detection_v2/Ultra_Fast_Lane_Detection_v2.cix
+```
+
+
+
+### Model Testing
+
+:::info
+Activate the virtual environment before running!
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Complete Conversion Workflow
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Lane_Detection/onnx_Ultra_Fast_Lane_Detection_v2/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Lane_Detection/onnx_Ultra_Fast_Lane_Detection_v2/model/Ultra_Fast_Lane_Detection_v2.onnx
+```
+
+
+
+### Project Structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── test_data
+└── Ultra_Fast_Lane_Detection_v2.cix
+```
+
+### Perform Model Quantization and Conversion
+
+
+
+```bash
+cd ..
+cixbuild cfg/Ultra-Fast-Lane-Detection_v2build.cfg
+```
+
+
+
+:::info[Push to Board]
+After completing the model conversion, push the cix model file to the board.
+:::
+
+### Test Host Inference
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Model Inference Results
+
+
+
+### Deploy to NPU
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Model Inference Results
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 4.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_vdsr.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_vdsr.mdx
index 840cb47a5..57baf6054 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_vdsr.mdx
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_vdsr.mdx
@@ -1,228 +1,139 @@
-This document explains how to use the CIX P1 NPU SDK to convert [VDSR](https://github.com/twtygqyy/pytorch-vdsr) into a model that can run on CIX SOC NPU.
+**VDSR** is a milestone architecture in the development history of image super-resolution technology. It successfully increased the depth of convolutional neural networks to 20 layers for the first time, solving the convergence problem of deep networks by introducing global residual learning mechanisms, and establishing the core approach of learning "image residuals" rather than directly learning pixel values.
-There are four main steps:
-:::tip
-Steps 1-3 should be executed in a Linux environment on an x86 host
-:::
+- **Key Features**: Supports multi-scale (2x, 3x, 4x) image super-resolution reconstruction with a single model, possessing powerful edge recovery capabilities and texture detail enhancement effects. Widely used in high-definition video conversion, digital image restoration, and medical image enhancement.
+- **Version Note**: This case uses the standard VDSR architecture. The model effectively captures image context information through a large receptive field and achieves efficient training processes using high learning rates with gradient clipping techniques. As the pioneering work of deep super-resolution algorithms, it provides visual clarity far beyond traditional interpolation methods while maintaining structural simplicity, making it the classic cornerstone choice for studying super-resolution technology evolution and industrial deployment.
-1. Download the NPU SDK and install NOE Compiler
-2. Download model files (code and scripts)
-3. Compile the model
-4. Deploy the model to Orion O6 / O6N
+:::info[Environment Setup]
+Configure the required environment in advance.
-## Download NPU SDK and Install NOE Compiler
+- [Environment Setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
-Please refer to [Install NPU SDK](./npu-introduction) to install the NPU SDK and NOE Compiler.
+## Quick Start
-## Download Model Files
+### Download Model Files
-The CIX AI Model Hub contains all the necessary files for VDSR. Please download them according to [Download CIX AI Model Hub](./ai-hub)
+
```bash
-cd ai_model_hub/models/ComputeVision/Super_Resolution/onnx_vdsr
+cd ai_model_hub_25_Q3/models/ComputeVision/Super_Resolution/onnx_vdsr
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Super_Resolution/onnx_vdsr/vdsr.cix
```
-Please confirm that the directory structure matches the following:
+
+
+### Model Testing
+
+:::info
+Activate the virtual environment before running!
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Complete Conversion Workflow
+
+### Download Model Files
+
+
```bash
-.
+cd ai_model_hub_25_Q3/models/ComputeVision/Super_Resolution/onnx_vdsr/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Super_Resolution/onnx_vdsr/model/vdsr.onnx
+```
+
+
+
+### Project Structure
+
+```txt
├── cfg
-│ └── onnx_vdsr_build.cfg
├── datasets
-│ └── calib_dataset.npy
-├── graph.json
├── inference_npu.py
├── inference_onnx.py
-├── output
-│ └── butterfly_comparison.png
+├── model
├── ReadMe.md
-└── test_data
- ├── butterfly_GT.bmp
- ├── butterfly_GT_scale_2.bmp
- ├── butterfly_GT_scale_3.bmp
- └── butterfly_GT_scale_4.bmp
+├── test_data
+└── vdsr.cix
```
-## Compile the Model
+### Perform Model Quantization and Conversion
-:::tip
-Users don't need to compile the model from scratch. Radxa provides a pre-compiled vdsr.cix model (which can be downloaded using the command below). If you use the pre-compiled model, you can skip the "Compile the Model" step.
+
```bash
-wget https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Super_Resolution/onnx_vdsr/vdsr.cix
+cd ..
+cixbuild cfg/onnx_vdsr_build.cfg
```
+
+
+:::info[Push to Board]
+After completing the model conversion, push the cix model file to the board.
:::
-### Prepare ONNX Model
-
-- Download the ONNX model
-
- [vdsr.onnx](https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Super_Resolution/onnx_vdsr/model/vdsr.onnx)
-
-- Simplify the model
-
- Here we use onnxsim to fix the model input shape and simplify the model
-
- ```bash
- pip3 install onnxsim onnxruntime
- onnxsim vdsr.onnx vdsr-sim.onnx --overwrite-input-shape 1,1,256,256
- ```
-
-### Compile the Model
-
-CIX SOC NPU supports INT8 computation. Before compiling the model, we need to use NOE Compiler to quantize the model to INT8.
-
-- Prepare calibration dataset
-
- - Use the existing calibration dataset in `datasets`
-
- ```bash
- .
- └── calibration_data.npy
- ```
-
- - Prepare your own calibration dataset
-
- There are multiple calibration dataset image files in the `test_data` directory
-
- ```bash
- .
- ├── 1.jpeg
- └── 2.jpeg
- ```
-
- Refer to the following script to generate the calibration file
-
- ```python
- import sys
- import os
- import numpy as np
- import cv2
- _abs_path = os.path.join(os.getcwd(), "../../../../")
- sys.path.append(_abs_path)
- from utils.image_process import normalize_image
- from utils.tools import get_file_list
- # Get a list of images from the provided path
- images_path = "test_data"
- images_list = get_file_list(images_path)
- data = []
- for image_path in images_list:
- image_numpy = cv2.imread(image_path)
- image_numpy = cv2.resize(image_numpy, (256, 256))
- image_gray = cv2.cvtColor(image_numpy,cv2.COLOR_BGR2GRAY)
- image_ex = np.expand_dims(image_gray, 0)
- input = normalize_image(image_ex)
- data.append(input)
- # concat the data and save calib dataset
- data = np.concatenate(data, axis=0)
- np.save("datasets/calib_data_tmp.npy", data)
- print("Generate calib dataset success.")
- ```
-
-- Use NOE Compiler to quantize and compile the model
-
- - Create a quantization and compilation cfg configuration file, please refer to the following configuration
-
- ```bash
- [Common]
- mode = build
-
- [Parser]
- model_type = onnx
- model_name = vdsr
- input_model = ./vdsr-sim.onnx
- input = input.1
- input_shape = [1,1,256,256]
- output_dir = ./out
-
- [Optimizer]
- metric_batch_size = 1
- dataset = numpydataset
- calibration_data = ./datasets/calib_data_tmp.npy
- calibration_batch_size = 1
- calibration_strategy_for_activation = extrema & <[Convolution]:mean>
- quantize_method_for_weight = per_channel_symmetric_full_range
- quantize_method_for_activation = per_tensor_asymmetric
- activation_bits = 8
- weight_bits = 8
- bias_bits = 32
- cast_dtypes_for_lib = True
- output_dir = ./out
- save_statistic_info=False
-
- [GBuilder]
- outputs=vdsr.cix
- target=X2_1204MP3
- tiling= fps
- ```
-
- - Compile the model
- :::tip
- If you encounter a cixbuild error `[E] Optimizing model failed! CUDA error: no kernel image is available for execution on the device ...`
- This means that the current version of torch does not support this GPU, please completely uninstall the current version of torch, and then download the latest version from the torch official website.
- :::
- ```bash
- cixbuild ./onnx_vdsr_build.cfg
- ```
-
-## Model Deployment
-
-### NPU Inference
-
-Copy the compiled .cix model to Orion O6 / O6N for model validation
+### Test Host Inference
+
+#### Run Inference Script
+
+
```bash
-python3 inference_npu.py --images ./test_data/ --model_path ./vdsr.cix
+python3 inference_onnx.py
```
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Super_Resolution/onnx_vdsr$ time python3 inference_npu.py --images ./test_data/ --model_path ./vdsr.cix
-npu: noe_init_context success
-npu: noe_load_graph success
-Input tensor count is 1.
-Output tensor count is 1.
-npu: noe_create_job success
-Scale= 4
-PSNR_bicubic= 20.777296489759777
-PSNR_predicted= 25.375403931263882
-npu: noe_clean_job success
-npu: noe_unload_graph success
-npu: noe_deinit_context success
+
-real 0m2.837s
-user 0m3.270s
-sys 0m0.223s
-```
+#### Model Inference Results
+
+
+
+{" "}
-Results are saved in the `output_npu` folder
+

-
+
-### CPU Inference
+### Deploy to NPU
-Use CPU to perform inference on the ONNX model for validation. This can be run on either an x86 host or Orion O6 / O6N
+#### Run Inference Script
+
+
```bash
-python3 inference_onnx.py --images ./test_data/ --onnx_path ./deeplabv3_resnet50-sim.onnx
+python3 inference_npu.py
```
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Super_Resolution/onnx_vdsr$ time python3 inference_onnx.py --images ./test_data/ --onnx_path ./vdsr-sim.onnx
-save output: onnx_ILSVRC2012_val_00004704.JPEG
+
-real 0m7.605s
-user 0m33.235s
-sys 0m0.558s
+#### Model Inference Results
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
```
-Results are saved in the `output_onnx` folder
+
-
+
-The inference results are consistent between NPU and CPU, but the running speed is significantly faster on NPU
+{" "}
-## Reference Documents
+

-Paper: [Accurate Image Super-Resolution Using Very Deep Convolutional Networks](https://arxiv.org/abs/1511.04587)
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_whisper-medium.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_whisper-medium.mdx
new file mode 100644
index 000000000..778b39b52
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_whisper-medium.mdx
@@ -0,0 +1,195 @@
+**Whisper** is an open-source general-purpose speech recognition model released by OpenAI. Pre-trained on 680,000 hours of large-scale multilingual data, it is highly robust and can handle complex background noise and various accents.
+
+- Key features: Supports high-accuracy multilingual speech-to-text, automatic language detection, and speech translation.
+- Version notes: This example uses the Whisper Medium Multilingual model. As a mid-sized member of the family, it balances accuracy (including Chinese and other languages) with inference efficiency, making it a mainstream choice that balances performance and speed.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download the model
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual/whisper_medium_multilingual_decoder.cix
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual/whisper_medium_multilingual_encoder.cix
+```
+
+
+
+### Install dependencies
+
+
+
+```bash
+sudo apt update
+sudo apt install ffmpeg
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual/model/whisper_medium_multilingual_decoder.onnx
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/Audio/Speech_Recognotion/onnx_whisper_medium_multilingual/model/whisper_medium_multilingual_encoder.onnx
+```
+
+
+
+### Project structure
+
+```txt
+.
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── test_data
+├── whisper
+├── whisper-medium
+├── whisper_medium_multilingual_decoder.cix
+└── whisper_medium_multilingual_encoder.cix
+```
+
+### Quantize and convert the model
+
+Convert the encoder
+
+
+
+```bash
+cd ..
+cixbuild cfg/whisper_medium_multilingual_encoder/whisper_medium_multilingual_encoder_build.cfg
+```
+
+
+
+Convert the decoder
+
+
+
+```bash
+cixbuild cfg/whisper_medium_multilingual_decoder/whisper_medium_multilingual_decoder_build.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Install ffmpeg
+
+
+
+```bash
+sudo apt update
+sudo apt install ffmpeg
+```
+
+
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Inference output
+
+A file named `test_audio_npu.txt` will be generated under the `output` directory.
+
+```txt
+They regain their apartment, apparently without disturbing the household of Gainwell.
+```
+
+### Deploy on NPU
+
+#### Install ffmpeg
+
+
+
+```bash
+sudo apt update
+sudo apt install ffmpeg
+```
+
+
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py --backend npu --encoder_model_path whisper_medium_multilingual_encoder.cix --decoder_model_path whisper_medium_multilingual_decoder.cix
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py --backend npu --encoder_model_path whisper_medium_multilingual_encoder.cix --decoder_model_path whisper_medium_multilingual_decoder.cix
+2025-12-29 10:55:26.758036920 [W:onnxruntime:Default, device_discovery.cc:164 DiscoverDevicesForPlatform] GPU device discovery failed: device_discovery.cc:89 ReadFileContents Failed to open file: "/sys/class/drm/card3/device/vendor"
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 5.
+Output tensor count is 2.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+A file named `test_audio_npu.txt` will be generated under the `output` directory.
+
+```txt
+They regain their apartment, apparently without disturbing the household of Gainwell.
+```
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8.mdx
deleted file mode 100644
index 7cea2fc9e..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8.mdx
+++ /dev/null
@@ -1,226 +0,0 @@
-This document explains how to use the CIX P1 NPU SDK to convert [YOLOv8](https://github.com/ultralytics/ultralytics/tree/v8.1.43) into a model that can run on CIX SOC NPU.
-
-There are four main steps:
-:::tip
-Steps 1-3 should be executed in a Linux environment on an x86 host
-:::
-
-1. Download the NPU SDK and install NOE Compiler
-2. Download model files (code and scripts)
-3. Compile the model
-4. Deploy the model to Orion O6 / O6N
-
-## Download NPU SDK and Install NOE Compiler
-
-Please refer to [Install NPU SDK](./npu-introduction) to install the NPU SDK and NOE Compiler.
-
-## Download Model Files
-
-The CIX AI Model Hub contains all the necessary files for YOLOv8. Please download them according to [Download CIX AI Model Hub](./ai-hub), then navigate to the corresponding directory.
-
-```bash
-cd ai_model_hub/models/ComputeVision/Object_Detection/onnx_yolov8_l
-```
-
-Please confirm that the directory structure matches the following:
-
-```bash
-.
-├── cfg
-│ └── yolov8_lbuild.cfg
-├── datasets
-│ ├── calibration_data.npy
-│ └── input0.bin
-├── graph.json
-├── inference_npu.py
-├── inference_onnx.py
-├── ReadMe.md
-└── test_data
- ├── 1.jpeg
- └── ILSVRC2012_val_00004704.JPEG
-```
-
-## Compile the Model
-
-:::tip
-Users don't need to compile the model from scratch. Radxa provides a pre-compiled yolov8_l.cix model (which can be downloaded using the command below). If you use the pre-compiled model, you can skip the "Compile the Model" step.
-
-```bash
-wget https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Object_Detection/onnx_yolov8_l/yolov8_l.cix
-```
-
-:::
-
-### Prepare ONNX Model
-
-- Download the ONNX model
-
- [yolov8l.onnx](https://modelscope.cn/models/cix/ai_model_hub_24_Q4/resolve/master/models/ComputeVision/Object_Detection/onnx_yolov8_l/model/yolov8l.onnx)
-
-- Simplify the model
-
- Here we use onnxsim to fix the model input shape and simplify the model
-
- ```bash
- pip3 install onnxsim onnxruntime
- onnxsim yolov8l.onnx yolov8l-sim.onnx --overwrite-input-shape 1,3,640,640
- ```
-
-### Compile the Model
-
-CIX SOC NPU supports INT8 computation. Before compiling the model, we need to use NOE Compiler to quantize the model to INT8.
-
-- Prepare the calibration dataset
-
- - Use the existing calibration dataset in `datasets`
-
- ```bash
- .
- └── calibration_data.npy
- ```
-
- - Prepare your own calibration dataset
-
- The `test_data` directory already contains several image files for calibration
-
- ```bash
- .
- ├── 1.jpeg
- └── ILSVRC2012_val_00004704.JPEG
- ```
-
- Refer to the following script to generate the calibration file
-
- ```python
- import sys
- import os
- import numpy as np
- _abs_path = os.path.join(os.getcwd(), "../../../../")
- sys.path.append(_abs_path)
- from utils.image_process import preprocess_object_detect_method1
- from utils.tools import get_file_list
- # Get a list of images from the provided path
- images_path = "test_data"
- images_list = get_file_list(images_path)
- data = []
- for image_path in images_list:
- input = preprocess_object_detect_method1(image_path, (640, 640))[3]
- data.append(input)
- # concat the data and save calib dataset
- data = np.concatenate(data, axis=0)
- np.save("datasets/calib_data_tmp.npy", data)
- print("Generate calib dataset success.")
- ```
-
- - Quantize and compile the model using NOE Compiler
-
- - Create a configuration file for quantization and compilation, refer to the following configuration
-
- ```bash
- [Common]
- mode = build
-
- [Parser]
- model_type = ONNX
- model_name = yolov8_l
- detection_postprocess =
- model_domain = OBJECT_DETECTION
- input_data_format = NCHW
- input_model = ./yolov8l-sim.onnx
- input = images
- input_shape = [1, 3, 640, 640]
- output_dir = ./
-
- [Optimizer]
- dataset = numpydataset
- calibration_data = datasets/calib_data_tmp.npy
- calibration_batch_size = 1
- output_dir = ./
- dump_dir = ./
- quantize_method_for_activation = per_tensor_asymmetric
- quantize_method_for_weight = per_channel_symmetric_restricted_range
- save_statistic_info = True
- trigger_float_op = disable & <[(258, 272)]:float16_preferred!>
- weight_bits = 8& <[(273,274)]:16>
- activation_bits = 8& <[(273,274)]:16>
- bias_bits = 32& <[(273,274)]:48>
-
- [GBuilder]
- target = X2_1204MP3
- outputs = yolov8_l.cix
- tiling = fps
- profile = True
- ```
-
- - Compile the model
- :::tip
- If you encounter the cixbuild error: `[E] Optimizing model failed! CUDA error: no kernel image is available for execution on the device ...`
- This means the current version of torch doesn't support this GPU. Please completely uninstall the current version of torch, then download the latest version from the official torch website.
- :::
- ```bash
- cixbuild ./yolov8_lbuild.cfg
- ```
-
-## Model Deployment
-
-### NPU Inference
-
-Copy the compiled .cix model to Orion O6 / O6N for model validation
-
-```bash
-python3 inference_npu.py --image_path ./test_data/ --model_path ./yolov8_l.cix
-```
-
-```bash
-v) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Object_Detection/onnx_yolov8_l$ time python3 inference_npu.py --image_path ./test_data/ --model_path ./yolov8_l.cix
-npu: noe_init_context success
-npu: noe_load_graph success
-Input tensor count is 1.
-Output tensor count is 1.
-npu: noe_create_job success
-100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 8.08it/s]
-npu: noe_clean_job success
-npu: noe_unload_graph success
-npu: noe_deinit_context success
-
-real 0m3.884s
-user 0m3.391s
-sys 0m0.400s
-```
-
-Results are saved in the `output_npu` folder
-
-
-
-
-
-### CPU Inference
-
-Use CPU to perform inference on the ONNX model for validation. This can be run on either an x86 host or Orion O6 / O6N
-
-```bash
-python3 inference_onnx.py --image_path ./test_data/ --onnx_path ./yolov8l.onnx
-```
-
-```bash
-(.venv) radxa@orion-o6:~/NOE/ai_model_hub/models/ComputeVision/Object_Detection/onnx_yolov8_l$ time python3 inference_onnx.py --image_path ./test_data/ --onnx_path ./yolov8l.onnx
-/usr/local/lib/python3.11/dist-packages/onnxruntime/capi/onnxruntime_inference_collection.py:69: UserWarning: Specified provider 'CUDAExecutionProvider' is not in available provider names.Available providers: 'ZhouyiExecutionProvider, CPUExecutionProvider'
- warnings.warn(
-100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:03<00:00, 1.86s/it]
-
-real 0m6.671s
-user 0m37.881s
-sys 0m0.616s
-```
-
-Results are saved in the `output_onnx` folder
-
-
-
-
-
-The inference results are consistent between NPU and CPU, but the running speed is significantly faster on NPU
-
-## Reference Documents
-
-Paper: [What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector](https://arxiv.org/abs/2408.15857)
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8n.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8n.mdx
new file mode 100644
index 000000000..afd5cf57a
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8n.mdx
@@ -0,0 +1,159 @@
+**YOLOv8n** is the smallest and fastest lightweight vision model in the YOLOv8 series released by Ultralytics. Based on an advanced deep learning architecture, it delivers excellent real-time detection performance with very low compute cost, making it a preferred choice for edge and mobile deployments.
+
+- Key features: Supports high-accuracy real-time object detection, instance segmentation, image classification, and pose estimation (keypoint detection).
+- Version notes: This example uses **YOLOv8n (Nano)**. As a lightweight benchmark in the family, it achieves very high FPS with minimal parameters, greatly reducing hardware requirements while maintaining mainstream detection accuracy. It is a strong choice that balances real-time responsiveness and ease of deployment.
+
+:::info[Environment setup]
+You need to set up the environment in advance.
+
+- [Environment setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick start
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Object_Detection/onnx_yolov8_n
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Object_Detection/onnx_yolov8_n/yolov8n.cix
+```
+
+
+
+### Test the model
+
+:::info
+Activate the virtual environment before running.
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Full conversion workflow
+
+### Download model files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Object_Detection/onnx_yolov8_n/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Object_Detection/onnx_yolov8_n/model/yolov8n.onnx
+```
+
+
+
+### Project structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── test_data
+└── yolov8n.cix
+```
+
+### Quantize and convert the model
+
+
+
+```bash
+cd ..
+cixbuild cfg/yolov8_nbuild.cfg
+```
+
+
+
+:::info[Copy to device]
+After conversion, copy the `.cix` model files to the device.
+:::
+
+### Test inference on the host
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Host inference output
+
+
+
+```bash
+$ python3 inference_onnx.py
+100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 19.24it/s]
+```
+
+
+
+
+

+

+
+
+### Deploy on NPU
+
+#### Run the inference script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Inference output
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 18.07it/s]
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+

+

+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8s-pose.mdx b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8s-pose.mdx
new file mode 100644
index 000000000..297436353
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/common/orion-common/app-dev/artificial-intelligence/_yolov8s-pose.mdx
@@ -0,0 +1,147 @@
+**YOLOv8-pose** is an advanced deep learning model specialized for human pose estimation, launched by Ultralytics. It inherits the excellent architecture of the YOLOv8 series in object detection and integrates object detection with keypoint localization in a single-stage inference process, enabling efficient capture of complex human movements.
+
+- **Key Features**: Supports real-time human keypoint detection and pose recognition, capable of accurately locating human skeletal joint points. Widely used in human motion analysis, interactive games, behavior monitoring, and rehabilitation guidance.
+- **Version Note**: This case uses the YOLOv8s-pose model. As a lightweight advanced version in the series, it maintains extremely high inference speed while enhancing feature extraction capabilities for complex backgrounds and limb occlusion scenarios by increasing model depth and channel count. It is currently the ideal choice for finding balance between performance and real-time performance, especially suitable for practical application scenarios that require both detection accuracy and edge deployment efficiency.
+
+:::info[Environment Setup]
+Configure the required environment in advance.
+
+- [Environment Setup](../../../../orion/o6/app-development/artificial-intelligence/env-setup.md)
+- [AI Model Hub](../../../../orion/o6/app-development/artificial-intelligence/ai-hub.md)
+ :::
+
+## Quick Start
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Pose_Estimation/onnx_yolov8s_pose
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Pose_Estimation/onnx_yolov8s_pose/yolov8s-pose.cix
+```
+
+
+
+### Model Testing
+
+:::info
+Activate the virtual environment before running!
+:::
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+## Complete Conversion Workflow
+
+### Download Model Files
+
+
+
+```bash
+cd ai_model_hub_25_Q3/models/ComputeVision/Pose_Estimation/onnx_yolov8s_pose/model
+wget https://www.modelscope.cn/models/cix/ai_model_hub_25_Q3/resolve/master/models/ComputeVision/Pose_Estimation/onnx_yolov8s_pose/model/yolov8s-pose.onnx
+```
+
+
+
+### Project Structure
+
+```txt
+├── cfg
+├── datasets
+├── inference_npu.py
+├── inference_onnx.py
+├── model
+├── ReadMe.md
+├── test_data
+└── yolov8s-pose.cix
+```
+
+### Perform Model Quantization and Conversion
+
+
+
+```bash
+cd ..
+cixbuild cfg/yolov8s_posebuild.cfg
+```
+
+
+
+:::info[Push to Board]
+After completing the model conversion, push the cix model file to the board.
+:::
+
+### Test Host Inference
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_onnx.py
+```
+
+
+
+#### Model Inference Results
+
+
+
+{" "}
+
+

+

+
+
+
+### Deploy to NPU
+
+#### Run Inference Script
+
+
+
+```bash
+python3 inference_npu.py
+```
+
+
+
+#### Model Inference Results
+
+
+
+```bash
+$ python3 inference_npu.py
+npu: noe_init_context success
+npu: noe_load_graph success
+Input tensor count is 1.
+Output tensor count is 1.
+npu: noe_create_job success
+npu: noe_clean_job success
+npu: noe_unload_graph success
+npu: noe_deinit_context success
+```
+
+
+
+
+
+{" "}
+
+

+

+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/README.md
index 3ff60f55b..d26965fae 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/README.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/README.md
@@ -4,6 +4,6 @@ sidebar_position: 50
# Application Development
-Introduction to application development for Radxa Orion O6, including NPU application development and more.
+Mainly introduces upper-layer application development, such as NPU application development, etc.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/API-manual.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/API-manual.md
new file mode 100644
index 000000000..0afdb2689
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/API-manual.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 9
+---
+
+import API_Manual from "../../../../common/orion-common/app-dev/artificial-intelligence/\_API-manual.mdx";
+
+# API Manual
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/README.md
new file mode 100644
index 000000000..89f34744a
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+# Audio Models
+
+This section mainly demonstrates the deployment of some representative **audio models** on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/whisper-medium.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/whisper-medium.md
new file mode 100644
index 000000000..4911423ba
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Audio/whisper-medium.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Whisper_Medium from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_whisper-medium.mdx";
+
+# Whisper
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/README.md
new file mode 100644
index 000000000..0c2a61db1
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 5
+---
+
+# Generative AI
+
+This section mainly demonstrates the deployment of some representative generative AI on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/clip.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/clip.md
new file mode 100644
index 000000000..c84923929
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/clip.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+import CLIP from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_clip.mdx';
+
+# CLIP
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md
new file mode 100644
index 000000000..78e959673
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import ERNIE4503BLLAMACPP from '../../../../../common/ai/\_ernie-4_5-0_3b_llama_cpp.mdx';
+
+# ERNIE 4.5-0.3B
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md
new file mode 100644
index 000000000..59b31c030
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 2
+---
+
+import ERNIE4521BA3BLLAMACPP from '../../../../../common/ai/\_ernie-4_5-21b-a3b_llama_cpp.mdx';
+
+# ERNIE 4.5-21B-A3B
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/sd-v1-4.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/sd-v1-4.md
new file mode 100644
index 000000000..900ae114f
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/GenAI/sd-v1-4.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+import SDv1_4 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_sd-v1-4.mdx';
+
+# Stable Diffusion
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/README.md
new file mode 100644
index 000000000..7d1ee38af
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 6
+---
+
+# Multimodal Models
+
+This section mainly demonstrates the deployment of some representative multimodal models on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md
new file mode 100644
index 000000000..93f3d4ddc
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md
@@ -0,0 +1,9 @@
+---
+sidebar-position: 2
+---
+
+import Qwen2_5vl from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_qwen2-5-vl-3b.mdx';
+
+# Qwen2.5 VL
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md
new file mode 100644
index 000000000..9f11303b5
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md
@@ -0,0 +1,9 @@
+---
+sidebar-position: 1
+---
+
+import Qwen2_vl from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_qwen2vl-2b.mdx';
+
+# Qwen2 VL
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/README.md
index d44018bb1..9f1e9a266 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/README.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/README.md
@@ -4,6 +4,8 @@ sidebar_position: 1
# Artificial Intelligence
-Introduction to application development using the NPU SDK for AI hardware acceleration.
+Radxa Orion O6 / O6N features up to 28.8 TOPS NPU computing power, supporting model deployment of INT4 / INT8 / INT16 / FP16 / BF16 and TF32 types.
+
+The following documentation will provide detailed introduction to the complete model deployment workflow based on this chip P1 NPU SDK "NeuralOne", focusing on environment configuration, model compilation and quantization, and common model deployment cases.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/README.md
new file mode 100644
index 000000000..89fa421b6
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+# Vision Models
+
+This section mainly demonstrates the deployment of some representative vision models on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/UFLD-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/UFLD-v2.md
new file mode 100644
index 000000000..5d83e5a7d
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/UFLD-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 7
+---
+
+import UFLDv2 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_ultra-fast-lane-detection-v2.mdx";
+
+# UFLDv2
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/deeplab_v3.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/deeplab_v3.md
new file mode 100644
index 000000000..31c0237a7
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/deeplab_v3.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 6
+---
+
+import DeepLabV3 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_deeplab-v3.mdx';
+
+# DeepLabV3
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/fast-scnn.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/fast-scnn.md
new file mode 100644
index 000000000..45281fe31
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/fast-scnn.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 5
+---
+
+import FastSCNN from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_fast-scnn.mdx";
+
+# Fast-SCNN
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/midas-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/midas-v2.md
new file mode 100644
index 000000000..69498db97
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/midas-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 12
+---
+
+import MiDas_v2 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_midas-v2.mdx';
+
+# MiDas
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/mobilenet-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/mobilenet-v2.md
new file mode 100644
index 000000000..be18277b9
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/mobilenet-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Mobilenet_V2 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_mobilenet-v2.mdx";
+
+# MobileNetV2
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/openpose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/openpose.md
new file mode 100644
index 000000000..49ef704b0
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/openpose.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 8
+---
+
+import OpenPose from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_openpose.mdx';
+
+# OpenPose
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/pp-ocr-v4.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/pp-ocr-v4.md
new file mode 100644
index 000000000..c42e903c7
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/pp-ocr-v4.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 11
+---
+
+import PP_OCR_V4 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_pp-ocr-v4.mdx";
+
+# PP-OCRv4
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/real-esrgan.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/real-esrgan.md
new file mode 100644
index 000000000..69262f447
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/real-esrgan.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 15
+---
+
+import Real_ESRGAN from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_real-esrgan.mdx';
+
+# Real-ESRGAN
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/resnet50.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/resnet50.md
new file mode 100644
index 000000000..0b8fff1ec
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/resnet50.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+import ResNet50 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_resnet50.mdx';
+
+# ResNet50
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/scrfd-arcface.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/scrfd-arcface.md
new file mode 100644
index 000000000..fdfbc682e
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/scrfd-arcface.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 10
+---
+
+import SCRFD_ArcFace from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_scrfd-arcface.mdx";
+
+# SCRFD-ArcFace
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/vdsr.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/vdsr.md
new file mode 100644
index 000000000..6a8321cee
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/vdsr.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 14
+---
+
+import VDSR from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_vdsr.mdx';
+
+# VDSR
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8n.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8n.md
new file mode 100644
index 000000000..bb0f16d55
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8n.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+import YOLOv8n from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8n.mdx";
+
+# YOLOv8n
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8s-pose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8s-pose.md
new file mode 100644
index 000000000..3c2ededac
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/Vision/yolov8s-pose.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 9
+---
+
+import YOLOv8s_pose from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8s-pose.mdx";
+
+# YOLOv8s-pose
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ai-hub.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ai-hub.md
index b472ecd89..4adad6eda 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ai-hub.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ai-hub.md
@@ -4,6 +4,6 @@ sidebar_position: 2
import AI_Hub from '../../../../common/orion-common/app-dev/artificial-intelligence/\_ai-hub.mdx';
-# CIX AI Model HUb
+# AI Model Hub
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/deeplab_v3.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/deeplab_v3.md
deleted file mode 100644
index 345e86753..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/deeplab_v3.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 6
----
-
-import DeepLabv3 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_deeplab_v3.mdx';
-
-# DeepLabv3 Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/env-setup.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/env-setup.md
new file mode 100644
index 000000000..d648bde4b
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/env-setup.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Env_Setup from "../../../../common/orion-common/app-dev/artificial-intelligence/\_env-setup.mdx";
+
+# Environment Setup
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md
deleted file mode 100644
index 39f5e043d..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 10
----
-
-import ERNIE4503BLLAMACPP from '../../../../common/ai/\_ernie-4_5-0_3b_llama_cpp.mdx';
-
-# ERNIE-4.5-0.3B
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md
deleted file mode 100644
index 858a5912e..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 11
----
-
-import ERNIE4521BA3BLLAMACPP from '../../../../common/ai/\_ernie-4_5-21b-a3b_llama_cpp.mdx';
-
-# ERNIE-4.5-21B-A3B
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/llama_cpp.md
index a86eb57ce..3bccc3ba6 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/llama_cpp.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/llama_cpp.md
@@ -1,9 +1,9 @@
---
-sidebar_position: 8
+sidebar_position: 7
---
import Llamacpp from '../../../../common/ai/\_llama_cpp.mdx';
-# Llama.cpp
+# llama.cpp
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/npu-introduction.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/npu-introduction.md
deleted file mode 100644
index 70a1b80cc..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/npu-introduction.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 1
----
-
-import NPU_Installation from '../../../../common/orion-common/app-dev/artificial-intelligence/\_npu-introduction.mdx';
-
-# NPU SDK Installation
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ollama.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ollama.md
index 78d030253..e3ea417af 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ollama.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/ollama.md
@@ -1,5 +1,5 @@
---
-sidebar_position: 9
+sidebar_position: 8
---
import Ollama from '../../../../common/ai/\_ollama.mdx';
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/openpose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/openpose.md
deleted file mode 100644
index 2b2fc55de..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/openpose.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 5
----
-
-import OpenPose from '../../../../common/orion-common/app-dev/artificial-intelligence/\_openpose.mdx';
-
-# OpenPose Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/resnet50.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/resnet50.md
deleted file mode 100644
index 545d6aeef..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/resnet50.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 3
----
-
-import ResNet50 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_resnet50.mdx';
-
-# ResNet50 Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/vdsr.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/vdsr.md
deleted file mode 100644
index 341a27c00..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/vdsr.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 7
----
-
-import VDSR from '../../../../common/orion-common/app-dev/artificial-intelligence/\_vdsr.mdx';
-
-# VDSR Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/yolov8.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/yolov8.md
deleted file mode 100644
index 3c0710a42..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/app-development/artificial-intelligence/yolov8.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 4
----
-
-import YOLOv8 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8.mdx';
-
-# YOLOv8 Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/hardware-use/hardware-info.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/hardware-use/hardware-info.md
index 8af0649b0..cf54f2f2e 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/hardware-use/hardware-info.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6/hardware-use/hardware-info.md
@@ -335,4 +335,4 @@ Onboard dual MIPI CSI 4-lane interfaces for connecting camera modules.
Onboard RTC battery holder for CR1220 coin cell battery, providing continuous clock signal and power management functionality.
-Note: Removing the RTC battery will not clear BIOS settings.
+Note: Removing the RTC battery will not immediately clear the BIOS settings; however, if there is no battery and the system is fully powered off and then powered on again, the firmware may detect an RTC power loss and automatically restore the BIOS default values.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/README.md
index c3753424c..d26965fae 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/README.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/README.md
@@ -4,6 +4,6 @@ sidebar_position: 50
# Application Development
-Introduction to high-level application development, such as NPU application development, etc.
+Mainly introduces upper-layer application development, such as NPU application development, etc.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/API-manual.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/API-manual.md
new file mode 100644
index 000000000..0afdb2689
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/API-manual.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 9
+---
+
+import API_Manual from "../../../../common/orion-common/app-dev/artificial-intelligence/\_API-manual.mdx";
+
+# API Manual
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/README.md
new file mode 100644
index 000000000..89f34744a
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+# Audio Models
+
+This section mainly demonstrates the deployment of some representative **audio models** on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/whisper-medium.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/whisper-medium.md
new file mode 100644
index 000000000..4911423ba
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Audio/whisper-medium.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Whisper_Medium from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_whisper-medium.mdx";
+
+# Whisper
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/README.md
new file mode 100644
index 000000000..0c2a61db1
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 5
+---
+
+# Generative AI
+
+This section mainly demonstrates the deployment of some representative generative AI on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/clip.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/clip.md
new file mode 100644
index 000000000..c84923929
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/clip.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+import CLIP from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_clip.mdx';
+
+# CLIP
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md
new file mode 100644
index 000000000..78e959673
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-0_3b_llama_cpp.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import ERNIE4503BLLAMACPP from '../../../../../common/ai/\_ernie-4_5-0_3b_llama_cpp.mdx';
+
+# ERNIE 4.5-0.3B
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md
new file mode 100644
index 000000000..59b31c030
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/ernie-4_5-21b-a3b_llama_cpp.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 2
+---
+
+import ERNIE4521BA3BLLAMACPP from '../../../../../common/ai/\_ernie-4_5-21b-a3b_llama_cpp.mdx';
+
+# ERNIE 4.5-21B-A3B
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/sd-v1-4.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/sd-v1-4.md
new file mode 100644
index 000000000..900ae114f
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/GenAI/sd-v1-4.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+import SDv1_4 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_sd-v1-4.mdx';
+
+# Stable Diffusion
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/README.md
new file mode 100644
index 000000000..7d1ee38af
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 6
+---
+
+# Multimodal Models
+
+This section mainly demonstrates the deployment of some representative multimodal models on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md
new file mode 100644
index 000000000..93f3d4ddc
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2-5-vl-3b.md
@@ -0,0 +1,9 @@
+---
+sidebar-position: 2
+---
+
+import Qwen2_5vl from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_qwen2-5-vl-3b.mdx';
+
+# Qwen2.5 VL
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md
new file mode 100644
index 000000000..9f11303b5
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Multimodality/qwen2vl-2b.md
@@ -0,0 +1,9 @@
+---
+sidebar-position: 1
+---
+
+import Qwen2_vl from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_qwen2vl-2b.mdx';
+
+# Qwen2 VL
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/README.md
index 7038abc31..9f1e9a266 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/README.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/README.md
@@ -4,6 +4,8 @@ sidebar_position: 1
# Artificial Intelligence
-Introduction to application development using NPU SDK for AI hardware acceleration
+Radxa Orion O6 / O6N features up to 28.8 TOPS NPU computing power, supporting model deployment of INT4 / INT8 / INT16 / FP16 / BF16 and TF32 types.
+
+The following documentation will provide detailed introduction to the complete model deployment workflow based on this chip P1 NPU SDK "NeuralOne", focusing on environment configuration, model compilation and quantization, and common model deployment cases.
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/README.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/README.md
new file mode 100644
index 000000000..89fa421b6
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/README.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+# Vision Models
+
+This section mainly demonstrates the deployment of some representative vision models on Radxa Orion O6 / O6N.
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/UFLD-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/UFLD-v2.md
new file mode 100644
index 000000000..5d83e5a7d
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/UFLD-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 7
+---
+
+import UFLDv2 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_ultra-fast-lane-detection-v2.mdx";
+
+# UFLDv2
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/deeplab_v3.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/deeplab_v3.md
new file mode 100644
index 000000000..31c0237a7
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/deeplab_v3.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 6
+---
+
+import DeepLabV3 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_deeplab-v3.mdx';
+
+# DeepLabV3
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/fast-scnn.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/fast-scnn.md
new file mode 100644
index 000000000..45281fe31
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/fast-scnn.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 5
+---
+
+import FastSCNN from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_fast-scnn.mdx";
+
+# Fast-SCNN
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/midas-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/midas-v2.md
new file mode 100644
index 000000000..69498db97
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/midas-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 12
+---
+
+import MiDas_v2 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_midas-v2.mdx';
+
+# MiDas
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/mobilenet-v2.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/mobilenet-v2.md
new file mode 100644
index 000000000..be18277b9
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/mobilenet-v2.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Mobilenet_V2 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_mobilenet-v2.mdx";
+
+# MobileNetV2
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/openpose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/openpose.md
new file mode 100644
index 000000000..49ef704b0
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/openpose.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 8
+---
+
+import OpenPose from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_openpose.mdx';
+
+# OpenPose
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/pp-ocr-v4.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/pp-ocr-v4.md
new file mode 100644
index 000000000..c42e903c7
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/pp-ocr-v4.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 11
+---
+
+import PP_OCR_V4 from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_pp-ocr-v4.mdx";
+
+# PP-OCRv4
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/real-esrgan.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/real-esrgan.md
new file mode 100644
index 000000000..69262f447
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/real-esrgan.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 15
+---
+
+import Real_ESRGAN from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_real-esrgan.mdx';
+
+# Real-ESRGAN
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/resnet50.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/resnet50.md
new file mode 100644
index 000000000..0b8fff1ec
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/resnet50.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 3
+---
+
+import ResNet50 from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_resnet50.mdx';
+
+# ResNet50
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/scrfd-arcface.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/scrfd-arcface.md
new file mode 100644
index 000000000..fdfbc682e
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/scrfd-arcface.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 10
+---
+
+import SCRFD_ArcFace from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_scrfd-arcface.mdx";
+
+# SCRFD-ArcFace
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/vdsr.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/vdsr.md
new file mode 100644
index 000000000..6a8321cee
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/vdsr.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 14
+---
+
+import VDSR from '../../../../../common/orion-common/app-dev/artificial-intelligence/\_vdsr.mdx';
+
+# VDSR
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8n.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8n.md
new file mode 100644
index 000000000..bb0f16d55
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8n.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 4
+---
+
+import YOLOv8n from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8n.mdx";
+
+# YOLOv8n
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8s-pose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8s-pose.md
new file mode 100644
index 000000000..3c2ededac
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/Vision/yolov8s-pose.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 9
+---
+
+import YOLOv8s_pose from "../../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8s-pose.mdx";
+
+# YOLOv8s-pose
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ai-hub.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ai-hub.md
index b472ecd89..4adad6eda 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ai-hub.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ai-hub.md
@@ -4,6 +4,6 @@ sidebar_position: 2
import AI_Hub from '../../../../common/orion-common/app-dev/artificial-intelligence/\_ai-hub.mdx';
-# CIX AI Model HUb
+# AI Model Hub
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/deeplab_v3.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/deeplab_v3.md
deleted file mode 100644
index 345e86753..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/deeplab_v3.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 6
----
-
-import DeepLabv3 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_deeplab_v3.mdx';
-
-# DeepLabv3 Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/env-setup.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/env-setup.md
new file mode 100644
index 000000000..d648bde4b
--- /dev/null
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/env-setup.md
@@ -0,0 +1,9 @@
+---
+sidebar_position: 1
+---
+
+import Env_Setup from "../../../../common/orion-common/app-dev/artificial-intelligence/\_env-setup.mdx";
+
+# Environment Setup
+
+
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md
deleted file mode 100644
index 39f5e043d..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-0_3b_llama_cpp.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 10
----
-
-import ERNIE4503BLLAMACPP from '../../../../common/ai/\_ernie-4_5-0_3b_llama_cpp.mdx';
-
-# ERNIE-4.5-0.3B
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md
deleted file mode 100644
index 858a5912e..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ernie-4_5-21b-a3b_llama_cpp.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 11
----
-
-import ERNIE4521BA3BLLAMACPP from '../../../../common/ai/\_ernie-4_5-21b-a3b_llama_cpp.mdx';
-
-# ERNIE-4.5-21B-A3B
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/llama_cpp.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/llama_cpp.md
index a86eb57ce..3bccc3ba6 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/llama_cpp.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/llama_cpp.md
@@ -1,9 +1,9 @@
---
-sidebar_position: 8
+sidebar_position: 7
---
import Llamacpp from '../../../../common/ai/\_llama_cpp.mdx';
-# Llama.cpp
+# llama.cpp
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/npu-introduction.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/npu-introduction.md
deleted file mode 100644
index 70a1b80cc..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/npu-introduction.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 1
----
-
-import NPU_Installation from '../../../../common/orion-common/app-dev/artificial-intelligence/\_npu-introduction.mdx';
-
-# NPU SDK Installation
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ollama.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ollama.md
index 78d030253..e3ea417af 100644
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ollama.md
+++ b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/ollama.md
@@ -1,5 +1,5 @@
---
-sidebar_position: 9
+sidebar_position: 8
---
import Ollama from '../../../../common/ai/\_ollama.mdx';
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/openpose.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/openpose.md
deleted file mode 100644
index 2b2fc55de..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/openpose.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 5
----
-
-import OpenPose from '../../../../common/orion-common/app-dev/artificial-intelligence/\_openpose.mdx';
-
-# OpenPose Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/resnet50.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/resnet50.md
deleted file mode 100644
index 545d6aeef..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/resnet50.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 3
----
-
-import ResNet50 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_resnet50.mdx';
-
-# ResNet50 Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/vdsr.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/vdsr.md
deleted file mode 100644
index 341a27c00..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/vdsr.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 7
----
-
-import VDSR from '../../../../common/orion-common/app-dev/artificial-intelligence/\_vdsr.mdx';
-
-# VDSR Example
-
-
diff --git a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/yolov8.md b/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/yolov8.md
deleted file mode 100644
index 3c0710a42..000000000
--- a/i18n/en/docusaurus-plugin-content-docs/current/orion/o6n/app-development/artificial-intelligence/yolov8.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-sidebar_position: 4
----
-
-import YOLOv8 from '../../../../common/orion-common/app-dev/artificial-intelligence/\_yolov8.mdx';
-
-# YOLOv8 Example
-
-