-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuzz_main.py
142 lines (122 loc) · 6.9 KB
/
buzz_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt
import click
import pickle
import torch.backends.cudnn as cudnn
from buzz_model import run
from content_model import QA_RNN
from util.helper_functions import load_best_model, plot_from_logger
from util.helper_classes import MBLoader
np.random.seed(0)
torch.manual_seed(0)
@click.command()
@click.option('--model_name', default="buzz_RL", help='Name of model.',show_default=True)
@click.option('--replay_memory_size', default=100000, help="Size of replay memory",show_default=True)
@click.option('--gamma', default=0.9, help="Discount factor.",show_default=True)
@click.option('--eps_start', default=0.95, help="greedy action eps start",show_default=True)
@click.option('--eps_end', default=0.1, help="greedy action eps end",show_default=True)
@click.option('--eps_decay', default=1000000, help="greedy action eps decay",show_default=True)
@click.option('--target_update', default=10000, help="sync interval btw policy and target nets",show_default=True)
@click.option('--data_dir', default="data/", help='Path to dataset file containing questions.')
@click.option('--checkpoint_file', default="checkpoints/buzz/checkpoint.pth", help='Path of checkpoint_file')
@click.option('--content_model_path', default="checkpoints/content/best_model.pth", help='Path of checkpoint_file')
@click.option('--batch_size', default=64, help="Batch size.",show_default=True)
@click.option('--num_layers', default=1, help="Number of RNN layers.",show_default=True)
@click.option('--learning_rate', default=0.001, help="LR",show_default=True)
@click.option('--state_size', default=128, help="RNN state size.",show_default=True)
@click.option('--dropout', default=0.0, help="keep_prob for droupout.",show_default=True)
@click.option('--val_interval', default=1, help='validation interval for early stopping. ',show_default=True)
@click.option('--save_interval', default=1, help='save_interval for saving the model parameters. ',show_default=True)
@click.option('--num_episodes', default=50, help='Number of iteration to train.',show_default=True)
@click.option('--train_embeddings', default=False, is_flag=True, help='train word embeddings.',show_default=True)
@click.option('--disable_cuda', default=False, is_flag=True, help='run on gpu or not',show_default=True)
@click.option('--restore', default=False, is_flag=True, help='restore previous model',show_default=True)
@click.option('--debug', default=False, is_flag=True, help='Debug model',show_default=True)
@click.option('--only_validate', default=False, is_flag=True, help='only val',show_default=True)
@click.option('--early_stopping', default=True, is_flag=True, help='early stopping on validation error.',show_default=True)
@click.option('--early_stopping_interval', default=15, help='early stopping on validation error.',show_default=True)
@click.option('--learn_start', default=50000, help='early stopping on validation error.',show_default=True)
@click.option('--update_freq', default=4, help='early stopping on validation error.',show_default=True)
def main(model_name,gamma, eps_start, eps_end, eps_decay, target_update, data_dir,batch_size,num_layers,learning_rate, state_size,dropout,save_interval,val_interval,early_stopping_interval,num_episodes,train_embeddings,early_stopping,disable_cuda,checkpoint_file,restore,debug,replay_memory_size,content_model_path, only_validate, learn_start, update_freq):
preprocessed_file = os.path.join(data_dir,"preprocessed_data.npz")
nf = np.load(preprocessed_file)
train_X,train_y,train_seq_len,\
train_buzzes,\
test_X,test_y,test_seq_len,\
test_buzzes,\
val_X,val_y,val_seq_len,\
val_buzzes,\
embd_mat = nf["train_X"],nf["train_y"],nf["train_seq_len"],\
nf["train_buzzes"],\
nf["test_X"],nf["test_y"],nf["test_seq_len"],\
nf["test_buzzes"],\
nf["val_X"],nf["val_y"],nf["val_seq_len"],\
nf["val_buzzes"],\
nf["embd_mat"]
print(list(map(lambda x:x.shape ,[train_X,train_y,train_seq_len,train_buzzes])))
print(list(map(lambda x:x.shape ,[test_X,test_y,test_seq_len,test_buzzes])))
print(list(map(lambda x:x.shape ,[val_X,val_y,val_seq_len,val_buzzes])))
in_file = os.path.join(data_dir,"mapping_opp.pkl")
with open(in_file,"rb") as handle:
user_features = pickle.load(handle)
user_features = user_features[0]
num_ans = len(set(train_y)|set(test_y)|set(val_y))
print("#Answers :",num_ans)
if debug: # run on some random sample
train_X = train_X[1020:1021]
train_y = train_y[1020:1021]
val_X = val_X[1020:1021]
val_y = val_y[1020:1021]
test_X = test_X[1020:1021]
test_y = test_y[1020:1021]
train_seq_len = train_seq_len[1020:1021]
val_seq_len = val_seq_len[1020:1021]
test_seq_len = test_seq_len[1020:1021]
model_name = model_name+"_"+str(train_X.shape[0])+"_"+str(val_X.shape[0])+"_"+str(test_X.shape[0])+"_"+str(batch_size)+"_"+str(dropout)
train_X = torch.from_numpy(train_X)
train_y = torch.from_numpy(train_y)
train_seq_len = torch.from_numpy(train_seq_len)
val_X = torch.from_numpy(val_X)
val_y = torch.from_numpy(val_y)
val_seq_len = torch.from_numpy(val_seq_len)
test_X = torch.from_numpy(test_X)
test_y = torch.from_numpy(test_y)
test_seq_len = torch.from_numpy(test_seq_len)
embd_mat = torch.from_numpy(embd_mat)#.cuda()
model = QA_RNN(batch_size, train_X.size(1), num_layers, state_size, num_ans + 1, embd_mat, non_trainable = True, disable_cuda = disable_cuda)
print(model)
content_model = load_best_model(model, filename = content_model_path)
if not disable_cuda:
torch.backends.cudnn.enabled = True
cudnn.benchmark = True
content_model.cuda()
train_X = train_X.cuda()
# train_seq_len = train_seq_len.cpu()
train_y = train_y.cuda()
test_X = test_X.cuda()
test_y = test_y.cuda()
# test_seq_len = test_seq_len.cpu()
val_X = val_X.cuda()
val_y = val_y.cuda()
# val_seq_len = val_seq_len.cpu()
inputs = [(train_X,train_y,train_seq_len,train_buzzes),
(val_X,val_y,val_seq_len,val_buzzes),
(test_X,test_y,test_seq_len,test_buzzes)]
hyperparameters = {'gamma' : gamma,
'eps_start' : eps_start,
'eps_end' : eps_end,
'eps_decay' : eps_decay,
'target_update' : target_update,
'num_episodes' : num_episodes,
'replay_memory_size' : replay_memory_size,
'update_freq': update_freq,
'learn_start' : learn_start}
loader = MBLoader(inputs, batch_size, user_features)
logger = run(hyperparameters, content_model, loader, restore, checkpoint_file, only_validate)
# plot_from_logger(logger, isbuzz = True)
if __name__ == '__main__':
main()