-
Notifications
You must be signed in to change notification settings - Fork 979
/
rcnn_test.m
126 lines (112 loc) · 3.83 KB
/
rcnn_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
function res = rcnn_test(rcnn_model, imdb, suffix)
% res = rcnn_test(rcnn_model, imdb, suffix)
% Compute test results using the trained rcnn_model on the
% image database specified by imdb. Results are saved
% with an optional suffix.
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
conf = rcnn_config('sub_dir', imdb.name);
image_ids = imdb.image_ids;
% assume they are all the same
feat_opts = rcnn_model.training_opts;
num_classes = length(rcnn_model.classes);
if ~exist('suffix', 'var') || isempty(suffix)
suffix = '';
else
suffix = ['_' suffix];
end
try
aboxes = cell(num_classes, 1);
for i = 1:num_classes
load([conf.cache_dir rcnn_model.classes{i} '_boxes_' imdb.name suffix]);
aboxes{i} = boxes;
end
catch
aboxes = cell(num_classes, 1);
box_inds = cell(num_classes, 1);
for i = 1:num_classes
aboxes{i} = cell(length(image_ids), 1);
box_inds{i} = cell(length(image_ids), 1);
end
% heuristic that yields at most 100k pre-NMS boxes
% per 2500 images
max_per_set = ceil(100000/2500)*length(image_ids);
max_per_image = 100;
top_scores = cell(num_classes, 1);
thresh = -inf(num_classes, 1);
box_counts = zeros(num_classes, 1);
if ~isfield(rcnn_model, 'folds')
folds{1} = 1:length(image_ids);
else
folds = rcnn_model.folds;
end
count = 0;
for f = 1:length(folds)
for i = folds{f}
count = count + 1;
fprintf('%s: test (%s) %d/%d\n', procid(), imdb.name, count, length(image_ids));
d = rcnn_load_cached_pool5_features(feat_opts.cache_name, ...
imdb.name, image_ids{i});
if isempty(d.feat)
continue;
end
d.feat = rcnn_pool5_to_fcX(d.feat, feat_opts.layer, rcnn_model);
d.feat = rcnn_scale_features(d.feat, feat_opts.feat_norm_mean);
zs = bsxfun(@plus, d.feat*rcnn_model.detectors(f).W, rcnn_model.detectors(f).B);
for j = 1:num_classes
boxes = d.boxes;
z = zs(:,j);
I = find(~d.gt & z > thresh(j));
boxes = boxes(I,:);
scores = z(I);
aboxes{j}{i} = cat(2, single(boxes), single(scores));
[~, ord] = sort(scores, 'descend');
ord = ord(1:min(length(ord), max_per_image));
aboxes{j}{i} = aboxes{j}{i}(ord, :);
box_inds{j}{i} = I(ord);
box_counts(j) = box_counts(j) + length(ord);
top_scores{j} = cat(1, top_scores{j}, scores(ord));
top_scores{j} = sort(top_scores{j}, 'descend');
if box_counts(j) > max_per_set
top_scores{j}(max_per_set+1:end) = [];
thresh(j) = top_scores{j}(end);
end
end
end
end
for i = 1:num_classes
% go back through and prune out detections below the found threshold
for j = 1:length(image_ids)
if ~isempty(aboxes{i}{j})
I = find(aboxes{i}{j}(:,end) < thresh(i));
aboxes{i}{j}(I,:) = [];
box_inds{i}{j}(I,:) = [];
end
end
save_file = [conf.cache_dir rcnn_model.classes{i} '_boxes_' imdb.name suffix];
boxes = aboxes{i};
inds = box_inds{i};
save(save_file, 'boxes', 'inds');
clear boxes inds;
end
end
% ------------------------------------------------------------------------
% Peform AP evaluation
% ------------------------------------------------------------------------
for model_ind = 1:num_classes
cls = rcnn_model.classes{model_ind};
res(model_ind) = imdb.eval_func(cls, aboxes{model_ind}, imdb, suffix);
end
fprintf('\n~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Results:\n');
aps = [res(:).ap]';
disp(aps);
disp(mean(aps));
fprintf('~~~~~~~~~~~~~~~~~~~~\n');