-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
294 lines (245 loc) · 10.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# title :models
# description :Script that contains the models used in our experiments.
# author :Ronald Mutegeki
# date :20210203
# version :1.0
# usage :Call it in utils.py.
# notes :This script is where the dataset we are using in this experiment is defined.
# You can customize the loss and activation functions, and any other model related configs.
from tensorflow.keras import Input
from tensorflow.keras.layers import Conv1D, MaxPool1D, Concatenate, Activation, Add, GlobalAveragePooling1D, \
Dense, LSTM, TimeDistributed, Reshape, BatchNormalization, Bidirectional, Flatten, MaxPooling1D, Dropout, \
SeparableConv1D
from tensorflow.keras.models import Model, Sequential, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l2
from tensorflow.keras.losses import CategoricalCrossentropy, Reduction
# ................................................................................................ #
# Dataset Configs
# 'daphnet'
# 'pamap2'
# 'opportunity'
# 'ucihar'
dataset = 'pamap2'
datapath = 'dataset/pamap2'
# ................................................................................................ #
if dataset == 'daphnet':
out_loss = 'binary_crossentropy'
out_activ = 'sigmoid'
else:
out_loss = CategoricalCrossentropy(reduction=Reduction.AUTO, name='output_loss')
out_activ = 'softmax'
# CNN Model
def cnn(x_shape,
n_classes,
filters,
fc_hidden_nodes,
learning_rate=0.01, regularization_rate=0.01,
metrics=None):
if metrics is None:
metrics = ['accuracy']
dim_length = x_shape[1] # number of samples in a time series
dim_channels = x_shape[2] # number of channels
dim_output = n_classes
weightinit = 'lecun_uniform' # weight initialization
m = Sequential()
m.add(BatchNormalization(input_shape=(dim_length, dim_channels)))
for filter_number in filters:
m.add(Conv1D(filter_number, kernel_size=3, padding='same',
kernel_regularizer=l2(regularization_rate),
kernel_initializer=weightinit))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(Flatten())
m.add(Dense(units=fc_hidden_nodes,
kernel_regularizer=l2(regularization_rate),
kernel_initializer=weightinit)) # Fully connected layer
m.add(Activation('relu')) # Relu activation
m.add(Dense(units=dim_output, kernel_initializer=weightinit, kernel_regularizer=l2(regularization_rate)))
m.add(BatchNormalization())
m.add(Activation(out_activ)) # Final classification layer
m.compile(loss=out_loss,
optimizer=Adam(lr=learning_rate),
metrics=metrics)
return m
# CNN-LSTM Model
def cnn_lstm(x_shape,
n_classes,
n_hidden=128,
learning_rate=0.01,
n_steps=4,
length=32,
n_signals=9,
regularization_rate=0.01,
cnn_depth=3,
lstm_depth=2,
metrics=['accuracy']):
""" CNN1D_LSTM version 1: Divide 1 window into several smaller frames, then apply CNN to each frame
- Input data format: [None, n_frames, n_timesteps, n_signals]"""
_input_shape = x_shape[1:]
m = Sequential()
m.add(Reshape((n_steps, length, n_signals), input_shape=_input_shape))
m.add(BatchNormalization())
m.add(TimeDistributed(Conv1D(filters=32, kernel_size=3, activation='relu', padding='same')))
m.add(TimeDistributed(Conv1D(filters=64, kernel_size=5, activation='relu')))
m.add(TimeDistributed(MaxPooling1D(pool_size=2)))
m.add(TimeDistributed(Conv1D(filters=64, kernel_size=5, activation='relu')))
m.add(TimeDistributed(Conv1D(filters=32, kernel_size=3, activation='relu')))
m.add(TimeDistributed(MaxPooling1D(pool_size=2)))
m.add(TimeDistributed(Flatten()))
for _ in range(lstm_depth-1):
m.add(LSTM(n_hidden, return_sequences=True,
kernel_regularizer=l2(regularization_rate)))
m.add(LSTM(n_hidden))
m.add(Dropout(0.5))
m.add(Dense(100, activation='relu',
kernel_regularizer=l2(regularization_rate)))
m.add(Dense(n_classes, activation=out_activ))
m.compile(loss=out_loss,
optimizer=Adam(learning_rate=learning_rate, amsgrad=True),
metrics=metrics)
return m
# Vanilla LSTM Model
def vanilla_lstm(x_shape,
n_classes,
n_hidden=128,
learning_rate=0.01,
regularization_rate=0.01,
metrics=['accuracy']):
""" Requires 3D data: [n_samples, n_timesteps, n_signals]"""
_input_shape = x_shape[1:]
m = Sequential()
m.add(BatchNormalization(input_shape=_input_shape))
m.add(LSTM(n_hidden))
m.add(Dropout(0.3))
m.add(Dense(100, activation='relu'))
m.add(Dense(n_classes, activation=out_activ, kernel_regularizer=l2(regularization_rate)))
m.compile(loss=out_loss,
optimizer=Adam(learning_rate=learning_rate),
metrics=metrics)
return m
# Stacked LSTM Model
def stacked_lstm(x_shape,
n_classes,
n_hidden=128,
learning_rate=0.01,
regularization_rate=0.01,
depth=2,
metrics=['accuracy']):
""" Require 3D data: [n_samples, n_timesteps, n_signals]"""
_input_shape = x_shape[1:]
dim_length = x_shape[1] # number of samples in a time series
dim_channels = x_shape[2] # number of channels
dim_output = n_classes
m = Sequential()
m.add(BatchNormalization(input_shape=_input_shape))
m.add(Dense(100, activation='relu', name='preprocess', kernel_regularizer=l2(regularization_rate)))
m.add(LSTM(n_hidden, return_sequences=True, kernel_regularizer=l2(regularization_rate)))
m.add(Dropout(0.5))
m.add(LSTM(n_hidden))
m.add(Dense(100, activation='relu'))
m.add(Dense(dim_output, activation=out_activ, name="output"))
m.compile(loss=out_loss,
optimizer=Adam(learning_rate=learning_rate, amsgrad=True),
metrics=metrics)
return m
# BiLSTM Model
def bilstm(x_shape,
n_classes,
n_hidden=128,
learning_rate=0.01,
regularization_rate=0.01,
merge_mode='concat',
depth=2,
metrics=['accuracy']):
""" Requires 3D data: [n_samples, n_timesteps, n_features]"""
_input_shape = x_shape[1:]
m = Sequential()
m.add(BatchNormalization(input_shape=_input_shape))
m.add(Bidirectional(LSTM(n_hidden), merge_mode=merge_mode))
m.add(Dense(100, activation='relu', kernel_regularizer=l2(regularization_rate)))
m.add(Dense(n_classes, activation=out_activ))
m.compile(loss=out_loss,
optimizer=Adam(learning_rate=learning_rate, amsgrad=True),
metrics=metrics)
return m
# iSPLInception Model
def ispl_inception(x_shape,
n_classes,
filters_number,
network_depth=5,
use_residual=True,
use_bottleneck=True,
max_kernel_size=20,
learning_rate=0.01,
bottleneck_size=32,
regularization_rate=0.01,
metrics=['accuracy']):
dim_length = x_shape[1] # number of samples in a time series
dim_channels = x_shape[2] # number of channels
weightinit = 'lecun_uniform' # weight initialization
def inception_module(input_tensor, stride=1, activation='relu'):
# The channel number is greater than 1
if use_bottleneck and int(input_tensor.shape[-1]) > 1:
input_inception = Conv1D(filters=bottleneck_size,
kernel_size=1,
padding='same',
activation=activation,
kernel_initializer=weightinit,
use_bias=False)(input_tensor)
else:
input_inception = input_tensor
kernel_sizes = [max_kernel_size // (2 ** i) for i in range(3)]
conv_list = []
for kernel_size in kernel_sizes:
conv_list.append(Conv1D(filters=filters_number,
kernel_size=kernel_size,
strides=stride,
padding='same',
activation=activation,
kernel_initializer=weightinit,
kernel_regularizer=l2(regularization_rate),
use_bias=False)(input_inception))
max_pool_1 = MaxPool1D(pool_size=3, strides=stride, padding='same')(input_tensor)
conv_last = Conv1D(filters=filters_number,
kernel_size=1,
padding='same',
activation=activation,
kernel_initializer=weightinit,
kernel_regularizer=l2(regularization_rate),
use_bias=False)(max_pool_1)
conv_list.append(conv_last)
x = Concatenate(axis=2)(conv_list)
x = BatchNormalization()(x)
x = Activation(activation='relu')(x)
return x
def shortcut_layer(input_tensor, out_tensor):
shortcut_y = Conv1D(filters=int(out_tensor.shape[-1]),
kernel_size=1,
padding='same',
kernel_initializer=weightinit,
kernel_regularizer=l2(regularization_rate),
use_bias=False)(input_tensor)
shortcut_y = BatchNormalization()(shortcut_y)
x = Add()([shortcut_y, out_tensor])
x = Activation('relu')(x)
return x
# Build the actual model:
input_layer = Input((dim_length, dim_channels))
x = BatchNormalization()(input_layer) # Added batchnorm (not in original paper)
input_res = x
for depth in range(network_depth):
x = inception_module(x)
if use_residual and depth % 3 == 2:
x = shortcut_layer(input_res, x)
input_res = x
gap_layer = GlobalAveragePooling1D()(x)
# Final classification layer
output_layer = Dense(n_classes, activation=out_activ,
kernel_initializer=weightinit, kernel_regularizer=l2(regularization_rate))(gap_layer)
# Create model and compile
m = Model(inputs=input_layer, outputs=output_layer)
m.compile(loss=out_loss,
optimizer=Adam(learning_rate=learning_rate, amsgrad=True),
metrics=metrics)
return m