Skip to content

Commit f6030c8

Browse files
Add files via upload
1 parent e67afb6 commit f6030c8

File tree

1 file changed

+273
-0
lines changed

1 file changed

+273
-0
lines changed

SVM_wine_data.ipynb

Lines changed: 273 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,273 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# importing the modules"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 1,
13+
"metadata": {
14+
"collapsed": true
15+
},
16+
"outputs": [],
17+
"source": [
18+
"#importin the library from the pip\n",
19+
"#installing libraries \n",
20+
"#pip3 install numpy, pandas, scikit\n",
21+
"import numpy as np\n",
22+
"import pandas as pd\n",
23+
"from sklearn import datasets"
24+
]
25+
},
26+
{
27+
"cell_type": "markdown",
28+
"metadata": {},
29+
"source": [
30+
"# Loading the Data"
31+
]
32+
},
33+
{
34+
"cell_type": "code",
35+
"execution_count": 2,
36+
"metadata": {
37+
"collapsed": true
38+
},
39+
"outputs": [],
40+
"source": [
41+
"#this is the import dataset from the scikit learn\n",
42+
"wine = datasets.load_wine()"
43+
]
44+
},
45+
{
46+
"cell_type": "markdown",
47+
"metadata": {},
48+
"source": [
49+
"# Features and Labels"
50+
]
51+
},
52+
{
53+
"cell_type": "code",
54+
"execution_count": 3,
55+
"metadata": {
56+
"collapsed": true
57+
},
58+
"outputs": [],
59+
"source": [
60+
"#here x denotes to the Features For the Data\n",
61+
"X = wine.data\n",
62+
"#here y denotes to the Labels for the data\n",
63+
"\"\"\"target is the labels for the data it consists of the classes or the prediction values\"\"\"\n",
64+
"y = wine.target"
65+
]
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"metadata": {},
70+
"source": [
71+
"# Train_Test_Split"
72+
]
73+
},
74+
{
75+
"cell_type": "code",
76+
"execution_count": 4,
77+
"metadata": {
78+
"collapsed": true
79+
},
80+
"outputs": [],
81+
"source": [
82+
"\"\"\"here we will separate the into the parts train part and the test part and into the split part of the data\n",
83+
"X_train, y_train consists of the only training features and the labels Example:- train_size = 0.8 it will consider \n",
84+
"80 persent training and 20 persent test (X_test, y_test)\"\"\"\n",
85+
"from sklearn.model_selection import train_test_split\n",
86+
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)"
87+
]
88+
},
89+
{
90+
"cell_type": "markdown",
91+
"metadata": {},
92+
"source": [
93+
"# Standerlization"
94+
]
95+
},
96+
{
97+
"cell_type": "code",
98+
"execution_count": 5,
99+
"metadata": {
100+
"collapsed": true
101+
},
102+
"outputs": [],
103+
"source": [
104+
"\"\"\"Here we are going to discuss about the scaling techniques the main important scaling technique is StandardScaler\n",
105+
"which will allow Data in Between the [1, 0] Tis is one of the most import preprocessing technique\"\"\"\n",
106+
"\n",
107+
"from sklearn.preprocessing import StandardScaler\n",
108+
"sc = StandardScaler()\n",
109+
"X_train = sc.fit_transform(X_train)\n",
110+
"X_test = sc.transform(X_test)"
111+
]
112+
},
113+
{
114+
"cell_type": "markdown",
115+
"metadata": {},
116+
"source": [
117+
"# SVM(Support Vector Machine)"
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"execution_count": 6,
123+
"metadata": {},
124+
"outputs": [
125+
{
126+
"data": {
127+
"text/plain": [
128+
"SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,\n",
129+
" decision_function_shape='ovr', degree=3, gamma='auto_deprecated',\n",
130+
" kernel='rbf', max_iter=-1, probability=False, random_state=0,\n",
131+
" shrinking=True, tol=0.001, verbose=False)"
132+
]
133+
},
134+
"execution_count": 6,
135+
"metadata": {},
136+
"output_type": "execute_result"
137+
}
138+
],
139+
"source": [
140+
"\"\"\"we are importing Support vector Machine from the Scikit Learn \n",
141+
"Present we are working with SVC(Support Vector Classifier) \n",
142+
"C is the most important parameter which says about the regularization and create good Hyper perameter line \n",
143+
"in the algorithm and also know as Penalty parameter C of the error term, random_state is the parameter which will use as the seed function it will work with \n",
144+
"random numbers , Kernel is the used to use for to solve non-linear complex dimention(Features) in the data set\n",
145+
"degree is used for only the poly nomial kernels , (rbf, linear, poly, sigmoid)\"\"\"\n",
146+
"from sklearn.svm import SVC\n",
147+
"ppn = SVC(C=1, random_state = 0)\n",
148+
"ppn.fit(X_train,y_train)"
149+
]
150+
},
151+
{
152+
"cell_type": "markdown",
153+
"metadata": {},
154+
"source": [
155+
"# predicting"
156+
]
157+
},
158+
{
159+
"cell_type": "code",
160+
"execution_count": 7,
161+
"metadata": {
162+
"collapsed": true
163+
},
164+
"outputs": [],
165+
"source": [
166+
"y_pred = ppn.predict(X_test)"
167+
]
168+
},
169+
{
170+
"cell_type": "markdown",
171+
"metadata": {},
172+
"source": [
173+
"# misscalssification"
174+
]
175+
},
176+
{
177+
"cell_type": "code",
178+
"execution_count": 8,
179+
"metadata": {},
180+
"outputs": [
181+
{
182+
"data": {
183+
"text/plain": [
184+
"0"
185+
]
186+
},
187+
"execution_count": 8,
188+
"metadata": {},
189+
"output_type": "execute_result"
190+
}
191+
],
192+
"source": [
193+
"(y_pred != y_test).sum()"
194+
]
195+
},
196+
{
197+
"cell_type": "markdown",
198+
"metadata": {},
199+
"source": [
200+
"# Accuracy"
201+
]
202+
},
203+
{
204+
"cell_type": "code",
205+
"execution_count": 9,
206+
"metadata": {
207+
"scrolled": true
208+
},
209+
"outputs": [
210+
{
211+
"data": {
212+
"text/plain": [
213+
"1.0"
214+
]
215+
},
216+
"execution_count": 9,
217+
"metadata": {},
218+
"output_type": "execute_result"
219+
}
220+
],
221+
"source": [
222+
"from sklearn.metrics import accuracy_score\n",
223+
"accuracy_score(y_test, y_pred)"
224+
]
225+
},
226+
{
227+
"cell_type": "raw",
228+
"metadata": {
229+
"collapsed": true
230+
},
231+
"source": []
232+
},
233+
{
234+
"cell_type": "code",
235+
"execution_count": null,
236+
"metadata": {
237+
"collapsed": true
238+
},
239+
"outputs": [],
240+
"source": []
241+
},
242+
{
243+
"cell_type": "code",
244+
"execution_count": null,
245+
"metadata": {
246+
"collapsed": true
247+
},
248+
"outputs": [],
249+
"source": []
250+
}
251+
],
252+
"metadata": {
253+
"kernelspec": {
254+
"display_name": "Python 3",
255+
"language": "python",
256+
"name": "python3"
257+
},
258+
"language_info": {
259+
"codemirror_mode": {
260+
"name": "ipython",
261+
"version": 3
262+
},
263+
"file_extension": ".py",
264+
"mimetype": "text/x-python",
265+
"name": "python",
266+
"nbconvert_exporter": "python",
267+
"pygments_lexer": "ipython3",
268+
"version": "3.6.7"
269+
}
270+
},
271+
"nbformat": 4,
272+
"nbformat_minor": 2
273+
}

0 commit comments

Comments
 (0)