|
| 1 | +# %% |
| 2 | + |
| 3 | +r""" |
| 4 | + RidgeRegression2FoldCV for data with low effective rank |
| 5 | + ======================================================= |
| 6 | + In this notebook we explain in more detail how |
| 7 | + :class:`skmatter.linear_model.RidgeRegression2FoldCV` speeds up the |
| 8 | + cross-validation optimizing the regularitzation parameter :param alpha: and |
| 9 | + compare it with existing solution for that in scikit-learn |
| 10 | + :class:`slearn.linear_model.RidgeCV`. |
| 11 | + :class:`skmatter.linear_model.RidgeRegression2FoldCV` was designed to predict |
| 12 | + efficiently feature matrices, but it can be also useful for the prediction |
| 13 | + single targets. |
| 14 | +""" |
| 15 | +# %% |
| 16 | +# |
| 17 | + |
| 18 | +import time |
| 19 | + |
| 20 | +import matplotlib.pyplot as plt |
| 21 | +import numpy as np |
| 22 | +from sklearn.datasets import make_regression |
| 23 | +from sklearn.linear_model import RidgeCV |
| 24 | +from sklearn.metrics import mean_squared_error |
| 25 | +from sklearn.model_selection import KFold, train_test_split |
| 26 | + |
| 27 | +from skmatter.linear_model import RidgeRegression2FoldCV |
| 28 | + |
| 29 | + |
| 30 | +# %% |
| 31 | + |
| 32 | +SEED = 12616 |
| 33 | +N_REPEAT_MICRO_BENCH = 5 |
| 34 | + |
| 35 | +# %% |
| 36 | +# Numerical instabilities of sklearn leave-one-out CV |
| 37 | +# --------------------------------------------------- |
| 38 | +# |
| 39 | +# In linear regression, the complexity of computing the weight matrix is |
| 40 | +# theoretically bounded by the inversion of the covariance matrix. This is |
| 41 | +# more costly when conducting regularized regression, wherein we need to |
| 42 | +# optimise the regularization parameter in a cross-validation (CV) scheme, |
| 43 | +# thereby recomputing the inverse for each parameter. scikit-learn offers an |
| 44 | +# efficient leave-one-out CV (LOO CV) for its ridge regression which avoids |
| 45 | +# these repeated computations [loocv]_. Because we needed an efficient ridge that works |
| 46 | +# in predicting for the reconstruction measures in :py:mod:`skmatter.metrics` |
| 47 | +# we implemented with :class:`skmatter.linear_model.RidgeRegression2FoldCV` an |
| 48 | +# efficient 2-fold CV ridge regression that uses a singular value decomposition |
| 49 | +# (SVD) to reuse it for all regularization parameters :math:`\lambda`. Assuming |
| 50 | +# we have the standard regression problem optimizing the weight matrix in |
| 51 | +# |
| 52 | +# .. math:: |
| 53 | +# |
| 54 | +# \begin{align} |
| 55 | +# \|\mathbf{X}\mathbf{W} - \mathbf{Y}\| |
| 56 | +# \end{align} |
| 57 | +# |
| 58 | +# Here :math:`\mathbf{Y}` can be seen also a matrix as it is in the case of |
| 59 | +# multi target learning. Then in 2-fold cross validation we would predict first |
| 60 | +# the targets of fold 2 using fold 1 to estimate the weight matrix and vice |
| 61 | +# versa. Using SVD the scheme estimation on fold 1 looks like this. |
| 62 | +# |
| 63 | +# .. math:: |
| 64 | +# |
| 65 | +# \begin{align} |
| 66 | +# &\mathbf{X}_1 = \mathbf{U}_1\mathbf{S}_1\mathbf{V}_1^T, |
| 67 | +# \qquad\qquad\qquad\quad |
| 68 | +# \textrm{feature matrix }\mathbf{X}\textrm{ for fold 1} \\ |
| 69 | +# &\mathbf{W}_1(\lambda) = \mathbf{V}_1 |
| 70 | +# \tilde{\mathbf{S}}_1(\lambda)^{-1} \mathbf{U}_1^T \mathbf{Y}_1, |
| 71 | +# \qquad |
| 72 | +# \textrm{weight matrix fitted on fold 1}\\ |
| 73 | +# &\tilde{\mathbf{Y}}_2 = \mathbf{X}_2 \mathbf{W}_1, |
| 74 | +# \qquad\qquad\qquad\qquad |
| 75 | +# \textrm{ prediction of }\mathbf{Y}\textrm{ for fold 2} |
| 76 | +# \end{align} |
| 77 | +# |
| 78 | +# The efficient 2-fold scheme in `RidgeRegression2FoldCV` reuses the matrices |
| 79 | +# |
| 80 | +# .. math:: |
| 81 | +# |
| 82 | +# \begin{align} |
| 83 | +# &\mathbf{A}_1 = \mathbf{X}_2 \mathbf{V}_1, \quad |
| 84 | +# \mathbf{B}_1 = \mathbf{U}_1^T \mathbf{Y}_1. |
| 85 | +# \end{align} |
| 86 | +# |
| 87 | +# for each fold to not recompute the SVD. The computational complexity |
| 88 | +# after the initial SVD is thereby reduced to that of matrix multiplications. |
| 89 | + |
| 90 | + |
| 91 | +# %% |
| 92 | +# We first create an artificial dataset |
| 93 | + |
| 94 | + |
| 95 | +X, y = make_regression( |
| 96 | + n_samples=1000, |
| 97 | + n_features=400, |
| 98 | + random_state=SEED, |
| 99 | +) |
| 100 | + |
| 101 | + |
| 102 | +# %% |
| 103 | + |
| 104 | +# regularization parameters |
| 105 | +alphas = np.geomspace(1e-12, 1e-1, 12) |
| 106 | + |
| 107 | +# 2 folds for train and validation split |
| 108 | +cv = KFold(n_splits=2, shuffle=True, random_state=SEED) |
| 109 | + |
| 110 | +skmatter_ridge_2foldcv_cutoff = RidgeRegression2FoldCV( |
| 111 | + alphas=alphas, regularization_method="cutoff", cv=cv |
| 112 | +) |
| 113 | + |
| 114 | +skmatter_ridge_2foldcv_tikhonov = RidgeRegression2FoldCV( |
| 115 | + alphas=alphas, regularization_method="tikhonov", cv=cv |
| 116 | +) |
| 117 | + |
| 118 | +sklearn_ridge_2foldcv_tikhonov = RidgeCV( |
| 119 | + alphas=alphas, cv=cv, fit_intercept=False # remove the incluence of learning bias |
| 120 | +) |
| 121 | + |
| 122 | +sklearn_ridge_loocv_tikhonov = RidgeCV( |
| 123 | + alphas=alphas, cv=None, fit_intercept=False # remove the incluence of learning bias |
| 124 | +) |
| 125 | + |
| 126 | +# %% |
| 127 | +# Now we do simple benchmarks |
| 128 | + |
| 129 | + |
| 130 | +def micro_bench(ridge): |
| 131 | + global N_REPEAT_MICRO_BENCH, X, y |
| 132 | + timings = [] |
| 133 | + train_mse = [] |
| 134 | + test_mse = [] |
| 135 | + for _ in range(N_REPEAT_MICRO_BENCH): |
| 136 | + X_train, X_test, y_train, y_test = train_test_split( |
| 137 | + X, y, train_size=0.5, random_state=SEED |
| 138 | + ) |
| 139 | + start = time.time() |
| 140 | + ridge.fit(X_train, y_train) |
| 141 | + end = time.time() |
| 142 | + timings.append(end - start) |
| 143 | + train_mse.append(mean_squared_error(y_train, ridge.predict(X_train))) |
| 144 | + test_mse.append(mean_squared_error(y_test, ridge.predict(X_test))) |
| 145 | + |
| 146 | + print(f" Time: {np.mean(timings)}s") |
| 147 | + print(f" Train MSE: {np.mean(train_mse)}") |
| 148 | + print(f" Test MSE: {np.mean(test_mse)}") |
| 149 | + |
| 150 | + |
| 151 | +print("skmatter 2-fold CV cutoff") |
| 152 | +micro_bench(skmatter_ridge_2foldcv_cutoff) |
| 153 | +print() |
| 154 | +print("skmatter 2-fold CV tikhonov") |
| 155 | +micro_bench(skmatter_ridge_2foldcv_tikhonov) |
| 156 | +print() |
| 157 | +print("sklearn 2-fold CV tikhonov") |
| 158 | +micro_bench(sklearn_ridge_2foldcv_tikhonov) |
| 159 | +print() |
| 160 | +print("sklearn leave-one-out CV") |
| 161 | +micro_bench(sklearn_ridge_loocv_tikhonov) |
| 162 | + |
| 163 | + |
| 164 | +# %% |
| 165 | +# We can see that leave-one-out CV is completely off. Let us manually check |
| 166 | +# each regularization parameter individually and compare it with the store mean |
| 167 | +# squared errors (MSE). |
| 168 | + |
| 169 | + |
| 170 | +results = {} |
| 171 | +results["sklearn 2-fold CV Tikhonov"] = {"MSE train": [], "MSE test": []} |
| 172 | +results["sklearn LOO CV Tikhonov"] = {"MSE train": [], "MSE test": []} |
| 173 | + |
| 174 | +X_train, X_test, y_train, y_test = train_test_split( |
| 175 | + X, y, train_size=0.5, random_state=SEED |
| 176 | +) |
| 177 | + |
| 178 | + |
| 179 | +def get_train_test_error(estimator): |
| 180 | + global X_train, y_train, X_test, y_test |
| 181 | + estimator = estimator.fit(X_train, y_train) |
| 182 | + return ( |
| 183 | + mean_squared_error(y_train, estimator.predict(X_train)), |
| 184 | + mean_squared_error(y_test, estimator.predict(X_test)), |
| 185 | + ) |
| 186 | + |
| 187 | + |
| 188 | +for i in range(len(alphas)): |
| 189 | + print(f"Computing step={i} using alpha={alphas[i]}") |
| 190 | + |
| 191 | + train_error, test_error = get_train_test_error(RidgeCV(alphas=[alphas[i]], cv=2)) |
| 192 | + results["sklearn 2-fold CV Tikhonov"]["MSE train"].append(train_error) |
| 193 | + results["sklearn 2-fold CV Tikhonov"]["MSE test"].append(test_error) |
| 194 | + train_error, test_error = get_train_test_error(RidgeCV(alphas=[alphas[i]], cv=None)) |
| 195 | + |
| 196 | + results["sklearn LOO CV Tikhonov"]["MSE train"].append(train_error) |
| 197 | + results["sklearn LOO CV Tikhonov"]["MSE test"].append(test_error) |
| 198 | + |
| 199 | + |
| 200 | +# returns array of errors, one error per fold/sample |
| 201 | +# ndarray of shape (n_samples, n_alphas) |
| 202 | +loocv_cv_train_error = ( |
| 203 | + RidgeCV( |
| 204 | + alphas=alphas, |
| 205 | + cv=None, |
| 206 | + store_cv_values=True, |
| 207 | + scoring=None, # uses by default mean squared error |
| 208 | + fit_intercept=False, |
| 209 | + ) |
| 210 | + .fit(X_train, y_train) |
| 211 | + .cv_values_ |
| 212 | +) |
| 213 | + |
| 214 | +results["sklearn LOO CV Tikhonov"]["MSE validation"] = np.mean( |
| 215 | + loocv_cv_train_error, axis=0 |
| 216 | +).tolist() |
| 217 | + |
| 218 | + |
| 219 | +# %% |
| 220 | + |
| 221 | +# We plot all the results. |
| 222 | +plt.figure(figsize=(12, 8)) |
| 223 | +for i, items in enumerate(results.items()): |
| 224 | + method_name, errors = items |
| 225 | + |
| 226 | + plt.loglog( |
| 227 | + alphas, |
| 228 | + errors["MSE test"], |
| 229 | + label=f"{method_name} MSE test", |
| 230 | + color=f"C{i}", |
| 231 | + lw=3, |
| 232 | + alpha=0.9, |
| 233 | + ) |
| 234 | + plt.loglog( |
| 235 | + alphas, |
| 236 | + errors["MSE train"], |
| 237 | + label=f"{method_name} MSE train", |
| 238 | + color=f"C{i}", |
| 239 | + lw=4, |
| 240 | + alpha=0.9, |
| 241 | + linestyle="--", |
| 242 | + ) |
| 243 | + if "MSE validation" in errors.keys(): |
| 244 | + plt.loglog( |
| 245 | + alphas, |
| 246 | + errors["MSE validation"], |
| 247 | + label=f"{method_name} MSE validation", |
| 248 | + color=f"C{i}", |
| 249 | + linestyle="dotted", |
| 250 | + lw=5, |
| 251 | + ) |
| 252 | +plt.ylim(1e-16, 1) |
| 253 | +plt.xlabel("alphas (regularization parameter)") |
| 254 | +plt.ylabel("MSE") |
| 255 | + |
| 256 | +plt.legend() |
| 257 | +plt.show() |
| 258 | + |
| 259 | +# %% |
| 260 | +# We can see that Leave-one-out CV is estimating the error wrong for low |
| 261 | +# alpha values. That seems to be a numerical instability of the method. If we |
| 262 | +# would have limit our alphas to 1E-5, then LOO CV would have reach similar |
| 263 | +# accuracies as the 2-fold method. |
| 264 | + |
| 265 | +# %% |
| 266 | +# **Important** to note that this is not an fully encompasing comparison |
| 267 | +# covering sufficient enough the parameter space. We just want to note that in |
| 268 | +# cases with high feature size and low effective rank the ridge solvers in |
| 269 | +# skmatter can be numerical more stable and act on a comparable speed. |
| 270 | + |
| 271 | +# %% |
| 272 | +# Cutoff and Tikhonov regularization |
| 273 | +# ---------------------------------- |
| 274 | +# When using a hard threshold as regularization (using parameter ``cutoff``), |
| 275 | +# the singular values below :math:`\lambda` are cut off, the size of the |
| 276 | +# matrices :math:`\mathbf{A}_1` and :math:`\mathbf{B}_1` can then be reduced, |
| 277 | +# resulting in further computation time savings. This performance advantage of |
| 278 | +# ``cutoff`` over the ``tikhonov`` is visible if we to predict multiple targets |
| 279 | +# and use a regularization range that cuts off a lot of singular values. For |
| 280 | +# that we increase the feature size and use as regression task the prediction |
| 281 | +# of a shuffled version of :math:`\mathbf{X}`. |
| 282 | + |
| 283 | +X, y = make_regression( |
| 284 | + n_samples=1000, |
| 285 | + n_features=400, |
| 286 | + n_informative=400, |
| 287 | + effective_rank=5, # decreasiing effective rank |
| 288 | + tail_strength=1e-9, |
| 289 | + random_state=SEED, |
| 290 | +) |
| 291 | + |
| 292 | +idx = np.arange(X.shape[1]) |
| 293 | +np.random.seed(SEED) |
| 294 | +np.random.shuffle(idx) |
| 295 | +y = X.copy()[:, idx] |
| 296 | + |
| 297 | +singular_values = np.linalg.svd(X, full_matrices=False)[1] |
| 298 | + |
| 299 | +# %% |
| 300 | + |
| 301 | +plt.loglog(singular_values) |
| 302 | +plt.title("Singular values of our feature matrix X") |
| 303 | +plt.axhline(1e-8, color="gray") |
| 304 | +plt.xlabel("index feature") |
| 305 | +plt.ylabel("singular value") |
| 306 | +plt.show() |
| 307 | + |
| 308 | +# %% |
| 309 | +# We can see that a regularization value of 1e-8 cuts off a lot of singular |
| 310 | +# values. This is crucial for the computational speed up of the ``cutoff`` |
| 311 | +# regularization method |
| 312 | + |
| 313 | +# %% |
| 314 | + |
| 315 | +# we use a denser range of regularization parameters to make |
| 316 | +# the speed up more visible |
| 317 | +alphas = np.geomspace(1e-8, 1e-1, 20) |
| 318 | + |
| 319 | +cv = KFold(n_splits=2, shuffle=True, random_state=SEED) |
| 320 | + |
| 321 | +skmatter_ridge_2foldcv_cutoff = RidgeRegression2FoldCV( |
| 322 | + alphas=alphas, |
| 323 | + regularization_method="cutoff", |
| 324 | + cv=cv, |
| 325 | +) |
| 326 | + |
| 327 | +skmatter_ridge_2foldcv_tikhonov = RidgeRegression2FoldCV( |
| 328 | + alphas=alphas, |
| 329 | + regularization_method="tikhonov", |
| 330 | + cv=cv, |
| 331 | +) |
| 332 | + |
| 333 | +sklearn_ridge_loocv_tikhonov = RidgeCV( |
| 334 | + alphas=alphas, cv=None, fit_intercept=False # remove the incluence of learning bias |
| 335 | +) |
| 336 | + |
| 337 | +print("skmatter 2-fold CV cutoff") |
| 338 | +micro_bench(skmatter_ridge_2foldcv_cutoff) |
| 339 | +print() |
| 340 | +print("skmatter 2-fold CV tikhonov") |
| 341 | +micro_bench(skmatter_ridge_2foldcv_tikhonov) |
| 342 | +print() |
| 343 | +print("sklearn LOO CV tikhonov") |
| 344 | +micro_bench(sklearn_ridge_loocv_tikhonov) |
| 345 | + |
| 346 | + |
| 347 | +# %% |
| 348 | +# We also want to note that these benchmarks have huge deviations per run and |
| 349 | +# that more robust benchmarking methods would be adequate for this situation. |
| 350 | +# However, we cannot do this here as we try to keep the computation of these |
| 351 | +# examples as minimal as possible. |
| 352 | + |
| 353 | +# %% |
| 354 | +# References |
| 355 | +# ---------- |
| 356 | +# .. [loocv] Rifkin "Regularized Least Squares." |
| 357 | +# https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf |
0 commit comments