@@ -128,13 +128,13 @@ def model(self, collection, message, key=None):
128
128
"""
129
129
130
130
if key is not None :
131
- combined_message = tf .concat ([message , key ], 1 )
131
+ combined_message = tf .concat (axis = 1 , values = [message , key ])
132
132
else :
133
133
combined_message = message
134
134
135
135
# Ensure that all variables created are in the specified collection.
136
136
with tf .contrib .framework .arg_scope (
137
- [tf .contrib .layers .fully_connected , tf .contrib .layers .convolution2d ],
137
+ [tf .contrib .layers .fully_connected , tf .contrib .layers .conv2d ],
138
138
variables_collections = [collection ]):
139
139
140
140
fc = tf .contrib .layers .fully_connected (
@@ -147,13 +147,13 @@ def model(self, collection, message, key=None):
147
147
# and then squeezing it back down).
148
148
fc = tf .expand_dims (fc , 2 )
149
149
# 2,1 -> 1,2
150
- conv = tf .contrib .layers .convolution2d (
150
+ conv = tf .contrib .layers .conv2d (
151
151
fc , 2 , 2 , 2 , 'SAME' , activation_fn = tf .nn .sigmoid )
152
152
# 1,2 -> 1, 2
153
- conv = tf .contrib .layers .convolution2d (
153
+ conv = tf .contrib .layers .conv2d (
154
154
conv , 2 , 1 , 1 , 'SAME' , activation_fn = tf .nn .sigmoid )
155
155
# 1,2 -> 1, 1
156
- conv = tf .contrib .layers .convolution2d (
156
+ conv = tf .contrib .layers .conv2d (
157
157
conv , 1 , 1 , 1 , 'SAME' , activation_fn = tf .nn .tanh )
158
158
conv = tf .squeeze (conv , 2 )
159
159
return conv
0 commit comments