-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_emb.py
87 lines (72 loc) · 2.74 KB
/
visualize_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from argparse import ArgumentParser
from multiprocessing import Pool
import os
from AESRC.dataset import AESRCDataset
from AESRC.lightning_model import LightningModel
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from tqdm import tqdm
import torch
import torch.utils.data as data
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from config import Config
if __name__ == "__main__":
parser = ArgumentParser(add_help=True)
parser.add_argument('--dataset_path', type=str, default=Config.dataset_path)
parser.add_argument('--data_csv_path', type=str, default=Config.data_csv_path)
parser.add_argument('--wav_len', type=int, default=Config.wav_len)
parser.add_argument('--model_checkpoint', type=str, default=Config.model_checkpoint)
parser = pl.Trainer.add_argparse_args(parser)
hparams = parser.parse_args()
# Training, Validation and Testing Dataset
## Training Dataset
train_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020TrainData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
)
## Validation Dataset
valid_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020ValData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
is_train=False
)
## Testing Dataset
test_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020TestData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
is_train=False
)
testloader = data.DataLoader(
valid_set,
batch_size=256,
shuffle=False,
num_workers=4,
drop_last=True
)
print('Dataset Split (Test)=', len(test_set))
# Testing the Model
if hparams.model_checkpoint:
with torch.no_grad():
model = LightningModel.load_from_checkpoint(hparams.model_checkpoint).cuda()
model.eval()
embs = []
labels = []
for x, ys in tqdm(testloader):
# for x, ys in tqdm(test_set):
accent, attn_output = model(x.cuda())
z_a = attn_output.cpu().detach().numpy()
embs.append(z_a)
labels.append(ys.view(-1).numpy())
embs = np.vstack(embs).reshape(-1, 512)
# print(labels)
labels = np.concatenate(labels, 0).reshape(-1)
writer = SummaryWriter()
writer.add_embedding(embs, metadata=labels, tag='accent')
writer.close()
else:
print('Model check point for testing is not provided!!!')