-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
303 lines (293 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import json
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
from typing import Dict
import torch
import argparse
from tqdm import tqdm, trange
from copy import deepcopy
from types import SimpleNamespace
from models import BertFor2Classification
from transformers.optimization import (
AdamW, get_linear_schedule_with_warmup)
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
import eval
from dataset import Data_WithContext,Data_WithoutContext
import os
import numpy as np
import random
from torch.cuda.amp import autocast, GradScaler
class AutomaticWeightedLoss(torch.nn.Module):
"""automatically weighted multi-task loss
Params:
num: int,the number of loss
x: multi-task loss
Examples:
loss1=1
loss2=2
awl = AutomaticWeightedLoss(2)
loss_sum = awl(loss1, loss2)
"""
def __init__(self, num=2):
super(AutomaticWeightedLoss, self).__init__()
params = torch.ones(num, requires_grad=True)
self.params = torch.nn.Parameter(params)
def forward(self, *x):
loss_sum = 0
for i, loss in enumerate(x):
loss_sum += 0.5 / (self.params[i] ** 2) * loss + torch.log(1 + self.params[i] ** 2)
return loss_sum
class Trainer:
def __init__(self,
model, data_loader: Dict[str, DataLoader], device, config, distributed):
self.model = model
self.device = device
self.config = config
self.data_loader = data_loader
self.num_training_steps = config.num_epoch * len(data_loader['train'])
self.awl = AutomaticWeightedLoss(2).cuda()
self.optimizer = self._get_optimizer()
self.scheduler = self._get_scheduler()
self.criterion = torch.nn.BCEWithLogitsLoss() # torch.nn.CrossEntropyLoss()
self.distributed = distributed
def _get_optimizer(self):
"""Get optimizer for different models.
Returns:
optimizer
"""
no_decay = ['bias', 'gamma', 'beta']
optimizer_parameters = [
{'params': [p for n, p in self.model.named_parameters()
if not any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [p for n, p in self.model.named_parameters()
if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0},
{'params': self.awl.parameters(), 'weight_decay': 0}
]
optimizer = AdamW(
optimizer_parameters,
lr=self.config.lr,
betas=(0.9, 0.999),
weight_decay=1e-8,
correct_bias=False)
return optimizer
def _get_scheduler(self):
"""Get scheduler for different models.
Returns:
scheduler
"""
scheduler = get_linear_schedule_with_warmup(
self.optimizer,
num_warmup_steps=self.config.num_warmup_steps * self.num_training_steps,
num_training_steps=self.num_training_steps)
return scheduler
def _epoch_evaluate(self):
dev_predictions, label_dev = eval.evaluate_model(
model=self.model, data_loader=self.data_loader['dev'],
device=self.device)
dev_acc = eval.compute_acc(label=label_dev, logits=dev_predictions)
dev_mrr = eval.compute_mrr(label=label_dev, logits=dev_predictions)
return dev_acc,dev_mrr
def save_model(self, filename):
"""Save model to file.
Args:
filename: file name
"""
torch.save(self.model.state_dict(), filename)
def sim_matrix(self, a, b, eps=1e-8):
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
a_norm = a / torch.clamp(a_n, min=eps)
b_norm = b / torch.clamp(b_n, min=eps)
sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
return sim_mt
def contrastive(self, embedding, label, temp):
"""calculate the contrastive loss
"""
# cosine similarity between embeddings
cosine_sim = self.sim_matrix(embedding, embedding)
n = cosine_sim.shape[0]
a = ~torch.eye(n, dtype=bool).cuda()
dis = cosine_sim.masked_select(a).view(n, n - 1)
# apply temperature to elements
dis = dis / temp
cosine_sim = cosine_sim / temp
# apply exp to elements
dis = torch.exp(dis)
cosine_sim = torch.exp(cosine_sim)
# calculate row sum
row_sum = torch.sum(dis, -1)
unique_labels, inverse_indices, unique_label_counts = torch.unique(label, sorted=False, return_inverse=True,
return_counts=True)
# calculate outer sum
contrastive_loss = torch.tensor(0, dtype=embedding.dtype, device=embedding.device)
for i in range(n):
n_i = unique_label_counts[inverse_indices[i]] - 1
inner_sum = torch.tensor(0, dtype=embedding.dtype, device=embedding.device)
# calculate inner sum
for j in range(n):
if label[i] == label[j] and i != j:
inner_sum = inner_sum + torch.log(cosine_sim[i][j] / row_sum[i])
if n_i != 0:
contrastive_loss += (inner_sum / (-n_i))
return contrastive_loss
def cal_contrastive_loss(self, emb, label, temp):
num = emb.shape[0]
loss = self.contrastive(emb.cuda(), label.cuda(), torch.tensor(temp).cuda())
loss_mean = loss / num
return loss_mean
def train(self):
scaler = GradScaler()
if self.distributed:
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, device_ids=[0, 1, 2, 3], find_unused_parameters=True)
# wandb.watch(self.model)
trange_obj = trange(self.config.num_epoch, desc='Epoch', ncols=120)
best_model_state_dict, best_dev_acc, global_step = None, 0, 0
for epoch, _ in enumerate(trange_obj):
self.model.train()
tqdm_obj = tqdm(self.data_loader['train'], ncols=80)
count = 0
loss_avg = 0
for step, batch in enumerate(tqdm_obj):
self.optimizer.zero_grad()
batch = tuple(t.to(self.device) for t in batch)
label = batch[-1]
with autocast():
logits, emb = self.model(*batch[:-1], train=True) # the last one is label
loss_classifer = self.criterion(logits.squeeze(),
label.float()) # self.convert_label_to_onehot(label).float()
if self.config.objective == 'BCE':
loss = loss_classifer
if self.config.objective == 'BCE+SCL':
loss_contrastive = self.cal_contrastive_loss(emb, label, self.config.temp)
loss = self.awl(loss_classifer,loss_contrastive)
count = count + 1
loss_avg = loss_avg + loss
lr = self.optimizer.state_dict()['param_groups'][0]['lr']
if count % 10 == 0:
loss_avg = loss_avg / 10
# wandb.log({
# "loss" + self.config.model_type: loss_avg,
# "lr" + self.config.model_type: lr
# })
loss_avg = 0
count = 0
if self.config.gradient_accumulation_steps > 1:
loss = loss / self.config.gradient_accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % self.config.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.config.max_grad_norm)
scaler.step(self.optimizer)
scaler.update()
self.scheduler.step()
global_step += 1
tqdm_obj.set_description('loss: {:.6f}'.format(loss.item()))
dev_acc,dev_mrr = self._epoch_evaluate()
print('epoch_{}:dev_acc_{},dev_mrr_{}'.format(epoch,dev_acc,dev_mrr))
if dev_acc > best_dev_acc:
best_model_state_dict = deepcopy(self.model.state_dict())
best_dev_acc = dev_acc
print("best_dev_acc:",best_dev_acc)
return best_model_state_dict,best_dev_acc
def _init_fn(worker_id):
np.random.seed(int(0))
def get_path(path):
"""Create the path if it does not exist.
Args:
path: path to be used
Returns:
Existed path
"""
if not os.path.exists(path):
os.makedirs(path)
return path
def main_fun(config_file='config/hyparam.json'):
"""Main method for training.
Args:
distributed: if distributed train.
"""
# 0. Load config and mkdir
seed = 42
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed) # 为CPU设置随机种子
torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
with open(config_file) as fin:
config = json.load(fin, object_hook=lambda d: SimpleNamespace(**d))
get_path(os.path.join(config.model_save_path, config.model_type))
if args.block_num!=0:
config.block_num = args.block_num
if args.block_size != 0:
config.block_size = args.block_size
if args.temp != 0:
config.temp = args.temp
# wandb.config.update(config)
# 1. Load data
print(">>>>>load data")
if config.model_type == 'bert_without_context':
data = Data_WithoutContext(config=config,
max_seq_len=config.max_seq_len,
model_type=config.model_type)
if config.model_type == 'bert_with_context':
data = Data_WithContext(config=config,
max_seq_len=config.max_seq_len,
model_type=config.model_type) # Data_ContextMultipleChoice
if config.noisy == 'NO':
noisy = False
else:
noisy = config.noisy
if config.hard_sample_con == 'NO':
hard_sample_con = False
else:
hard_sample_con = True
assert config.eval_batch_size % 5 ==0, "eval_batch_size must be divisible by 5"
train_set, dev_set = data.load_train_and_dev_files(
train_file=config.train_file_path,
dev_file=config.dev_file_path,hard_sample_con = hard_sample_con,noisy=noisy)
if torch.cuda.is_available():
device = torch.device('cuda')
if args.distributed:
print("Using distributed for train!!")
torch.distributed.init_process_group(backend="nccl")
sampler_train = DistributedSampler(train_set, shuffle=True, seed=seed)
else:
sampler_train = RandomSampler(train_set)
else:
device = torch.device('cpu')
sampler_train = RandomSampler(train_set)
data_loader = {
'train': DataLoader(
train_set, sampler=sampler_train, batch_size=config.batch_size, num_workers=16, worker_init_fn=_init_fn),
'dev': DataLoader(
dev_set, batch_size=config.eval_batch_size, shuffle=False, num_workers=16, worker_init_fn=_init_fn)}
# 2. Build model
print(">>>>>Build model")
model = BertFor2Classification(config)
model.to(device)
# 3. Train and Save model
print(">>>>>Train and Save model")
trainer = Trainer(model=model, data_loader=data_loader,
device=device, config=config, distributed=args.distributed)
best_model_dev_dict,best_dev_acc = trainer.train()
# 4. Save model
print(">>>>>Save model")
torch.save(best_model_dev_dict,
os.path.join(config.model_save_path, 'model_{}.bin'.format(best_dev_acc)))
if __name__ == '__main__':
# torch.cuda.set_device(1)
parser = argparse.ArgumentParser()
# You can also use the parser to adjust hyparameters
parser.add_argument('--local_rank', default=0, help='used for distributed parallel')
parser.add_argument("--distributed", action="store_true", help="if distributed train.")
parser.add_argument("--block_num", type=int, default=0, help="block num")
parser.add_argument("--block_size", type=int, default=0, help="block size")
parser.add_argument("--temp", type=float, default=0, help="block size")
args = parser.parse_args()
main_fun()