-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommend.py
62 lines (52 loc) · 2.44 KB
/
recommend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import json
import numpy as np
import pandas as pd
from pymongo import MongoClient
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
def recommend(userprofile):
client = MongoClient('mongodb://localhost:27017')
db = client['bigdata']
collection = db['job_vectors']
klist = []
embeddinglist = []
for document in collection.find():
klist.append(document['job_description'])
embeddinglist.append(document['job_vector'])
#model搞一个
model = SentenceTransformer('distilbert-base-nli-stsb-mean-tokens')
#encode一下user数据变成向量
sentence_embedding = model.encode(userprofile)
#valuelist变成向量
embeddinglist = [np.array(v, dtype=object) for v in embeddinglist]
#find similiarity
similarity_matrix = cosine_similarity([sentence_embedding] , embeddinglist).flatten()
#panda去sort
df=pd.DataFrame({"sentence":klist,"similarityscore":similarity_matrix})
result_list = df.sort_values(by=["similarityscore"], ascending=False).head(10)["sentence"].tolist()
ans=[]
for collection_name in db.list_collection_names() :
if collection_name =='job_vectors': continue
collection = db[collection_name]
cursor = collection.find()
# Iterate through all documents in the collection
for document in cursor:
# Extract job description field
if document.get('job_description', None) in result_list:
ans.append((document.get('job_title', None),document.get('job_publisher', None),document.get('job_id', None),document.get('employer_name', None),document.get('job_posted_at_timestamp', None),document.get('job_employment_type', None),document.get('job_job_title', None),document.get('job_city', None),document.get('job_state', None)))
return json.dumps(list(set(ans)))
#print(recommend("researcher new york"))
# svm recommend
X_train = np.tile(job_vectors, (8, 1))
y_train = user_interactions[:8].flatten()
X_test = np.tile(job_vectors, (2, 1))
y_test = user_interactions[8:].flatten()
clf = SVC(probability=True)
clf.fit(X_train, y_train)
recommendations = clf.predict_proba(X_test)[:, 1]
recommendations = recommendations.reshape(2, -1)
for i in range(2):
recommended_jobs = np.argsort(recommendations[i])[::-1]
print(f"Recommended jobs for user {i+9}: {recommended_jobs}")