-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
269 lines (243 loc) · 7.82 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# TTS2016R
## 2016 Transportation Tomorrow Survey (TTS) data package: trips and estimated travel time to work in the Greater Golden Horsehoe area, Canada
This package contains objects which are sourced from the 2016
Transportation Tomorrow Survey
[(TTS)](http://dmg.utoronto.ca/drs) and objects curated to
facilitate the use and analysis of TTS data. TTS 2016 is one of the
largest travel surveys in southern Ontario, Canada, and a slice of this
survey has been cleaned, packaged, and augmented for easy use in an `R`
environment.
A data paper describing and discussing this package has been published:
Soukhov, A., & Páez, A. (2023). *TTS2016R: A data set to study population and employment patterns from the 2016 Transportation Tomorrow Survey in the Greater Golden Horseshoe area, Ontario, Canada*. Environment and Planning B: Urban Analytics and City Science, 50(2) 556-563. DOI:10.1177/23998083221146781
[![DOI](https://zenodo.org/badge/465815515.svg)](https://zenodo.org/badge/latestdoi/465815515)
## What is this data package?
{TTS2016R} is an open data product. Open data products are the result of turning source data (open or otherwise) into accessible information that adds value to the original inputs [see Arribas et. al (2021)](https://rdcu.be/dn6yP). The product presented here is an `R` data package that consists of objects sourced from the 2016 Transportation Tomorrow Survey (TTS) or curated to facilitate the use and analysis of TTS data. This package includes person-to-jobs origin-destinations, traffic analysis zone (TAZ) boundaries and planning/municipality boundaries for the Greater Golden Horse area (GGH) in Ontario, Canada [Data Management Group (2018)](http://dmg.utoronto.ca/transportation-tomorrow-survey/tts-introduction). In addition, the package includes TAZ centroid-to-centroid travel times by car computed using package [`r5r`](https://github.com/ipeaGIT/r5r).
Data from the TTS are freely available to the public through the [TTS Data Retrieval System](http://dmg.utoronto.ca/drs) but the raw data can be technically demanding, cumbersome to work with, and could require multiple software applications to process. By pre-processing the data in the `R` environment, {TTS2016R} offers a slice of the TTS data useful to understand patterns of commuting to work in the region. It also provides open infrastructure for additional TTS or complementary data sets to be added by the authors or a wider open-source community in the future.
## Setup
Installation:
``` r
if (!require("remotes", character.only = TRUE)) {
install.packages("remotes")
}
remotes::install_github("soukhova/TTS2016R",
build_vignettes = TRUE)
```
## Data Overview
The 2016 Transportation Tomorrow Survey (TTS) data is from the the Greater Golden Horseshoe (GGH), an area that is located within the province of Ontario, Canada (43.6°N 79.73°W). Included within are the associated municipality boundaries, boundaries of the Traffic Analysis Zones (TAZ), a table with the number of full-time jobs and associated full-time workers at each TAZ, and the trips (by primary mode) from origin (residential TAZ) to destination (workplace TAZ). Also included are calculated travel times by car (calculated via [`r5r`](https://github.com/ipeaGIT/r5r)) and derived impedance function values corresponding to the cost of travel based on the trip length distribution.
<img src="man/figures/TTS16-survey-area.png" />
The plot that follows has a spatial visualization of the number of workers
and jobs within each TAZ:
<img src="man/figures/tts-workers-jobs-plot.png" />
Let's take a look at a slice of the TTS 2016 OD data. We filter the OD table to show a few OD pairs that have 2 workers at the origin and their associated estimated car travel time (minutes):
<table>
<thead>
<tr>
<th style="text-align:left;">
Origin
</th>
<th style="text-align:left;">
Destination
</th>
<th style="text-align:right;">
Workers
</th>
<th style="text-align:right;">
Travel Time (min)
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
3640
</td>
<td style="text-align:left;">
3718
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
24
</td>
</tr>
<tr>
<td style="text-align:left;">
3640
</td>
<td style="text-align:left;">
3849
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
20
</td>
</tr>
<tr>
<td style="text-align:left;">
3640
</td>
<td style="text-align:left;">
3866
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
20
</td>
</tr>
<tr>
<td style="text-align:left;">
3879
</td>
<td style="text-align:left;">
3877
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
8
</td>
</tr>
<tr>
<td style="text-align:left;">
3879
</td>
<td style="text-align:left;">
4003
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
17
</td>
</tr>
<tr>
<td style="text-align:left;">
3879
</td>
<td style="text-align:left;">
4007
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
18
</td>
</tr>
<tr>
<td style="text-align:left;">
3879
</td>
<td style="text-align:left;">
63
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
24
</td>
</tr>
<tr>
<td style="text-align:left;">
8417
</td>
<td style="text-align:left;">
3152
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
43
</td>
</tr>
<tr>
<td style="text-align:left;">
8417
</td>
<td style="text-align:left;">
3707
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
62
</td>
</tr>
<tr>
<td style="text-align:left;">
8417
</td>
<td style="text-align:left;">
3816
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
65
</td>
</tr>
<tr>
<td style="text-align:left;">
8417
</td>
<td style="text-align:left;">
55
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
82
</td>
</tr>
<tr>
<td style="text-align:left;">
8417
</td>
<td style="text-align:left;">
8415
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:right;">
43
</td>
</tr>
</tbody>
</table>
See .Rmd files in the
[`\data-raw folder`](https://github.com/soukhova/TTS2016R/tree/master/data-raw)
for additional details on how the included data sets were compiled. See the
[vignettes](https://soukhova.github.io/TTS2016R/index.html) for detailed
examples using the data sets and comparing comparison of different
accessibility measures.
## Contributing to this data package
The purpose of this data package is to make the data of the TTS 2016 easily and freely available for analysis in a `R` environment. Currently, the data package provides a few slices of the TTS 2016, but we invite others from the community to request additional data, report issues and even contribute to the data package.
If interested in contributing, please try to adhere to the following steps:
1. If you notice spelling errors or other hick-ups, please submit an issue.
2. If you use the data package and would like to share an interesting use case or analysis, please fork the repository, save the analysis file in [vignettes](https://github.com/soukhova/TTS2016R/tree/master/vignettes/articles) and submit a pull request. Analysis files will be reviewed and added as articles (with full credit).
<!-- badges: start --><a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /><br /></a>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a><br /><!-- badges: end -->