-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbf_output_image_dics.m
423 lines (343 loc) · 12.5 KB
/
bf_output_image_dics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
function res = bf_output_image_dics(BF, S)
% Computes DICS image
% Copyright (C) 2013 Wellcome Trust Centre for Neuroimaging
% Vladimir Litvak
% $Id$
%--------------------------------------------------------------------------
if nargin == 0
all = cfg_const;
all.tag = 'all';
all.name = 'All';
all.val = {1};
condlabel = cfg_entry;
condlabel.tag = 'condlabel';
condlabel.name = 'Condition label';
condlabel.strtype = 's';
condlabel.val = {''};
conditions = cfg_repeat;
conditions.tag = 'conditions';
conditions.name = 'Conditions';
conditions.help = {'Specify the labels of the conditions to be included in the inversion'};
conditions.num = [1 Inf];
conditions.values = {condlabel};
conditions.val = {condlabel};
whatconditions = cfg_choice;
whatconditions.tag = 'whatconditions';
whatconditions.name = 'What conditions to include?';
whatconditions.values = {all, conditions};
whatconditions.val = {all};
sametrials = cfg_menu;
sametrials.tag = 'sametrials';
sametrials.name = 'Trials same as for filters';
sametrials.labels = {'yes', 'no'};
sametrials.values = {true, false};
sametrials.val = {false};
sametrials.help = {'Take the same trials as used for filter computation',...
'This is useful for bootstrap.'};
woi = cfg_entry;
woi.tag = 'woi';
woi.name = 'Time windows of interest';
woi.strtype = 'r';
woi.num = [Inf 2];
woi.val = {[-Inf Inf]};
woi.help = {'Time windows (in ms)'};
name = cfg_entry;
name.tag = 'name';
name.name = 'Channel name';
name.strtype = 's';
name.num = [1 Inf];
name.help = {'Reference channel name.'};
shuffle = cfg_menu;
shuffle.tag = 'shuffle';
shuffle.name = 'Shuffle';
shuffle.help = {'Shuffle the reference channel to produce the null case.'};
shuffle.labels = {'yes', 'no'};
shuffle.values = {1, 0};
shuffle.val = {0};
refchan = cfg_branch;
refchan.tag = 'refchan';
refchan.name = 'Reference channel';
refchan.val = {name, shuffle};
refdip = cfg_entry;
refdip.tag = 'refdip';
refdip.name = 'Reference source';
refdip.strtype = 'r';
refdip.num = [1 3];
refdip.help = {'Location of the reference in MNI coordinates'};
power = cfg_const;
power.tag = 'power';
power.name = 'Power (no reference)';
power.val = {1};
power.help = {'Compute power image'};
reference = cfg_choice;
reference.tag = 'reference';
reference.name = 'Reference type';
reference.values = {power, refchan, refdip};
reference.val = {power};
powmethod = cfg_menu;
powmethod.tag = 'powmethod';
powmethod.name = 'Power summary method';
powmethod.help = {'How to summarise the power for vector beamformer'};
powmethod.labels = {'trace', 'lambda1', 'imag'};
powmethod.values = {'trace', 'lambda1', 'imag'};
powmethod.val = {'lambda1'};
foi = cfg_entry;
foi.tag = 'foi';
foi.name = 'Frequency band of interest';
foi.strtype = 'r';
foi.num = [1 2];
foi.help = {'Frequency window within which to compute CSD over (Hz)'};
taper = cfg_menu;
taper.tag = 'taper';
taper.name = 'Taper';
taper.help = {'Save taper as well as power'};
taper.labels = {'Hanning', 'Rectangular', 'DPSS', 'Sine'};
taper.values = {'hanning', 'rectwin', 'dpss', 'sine'};
taper.val = {'dpss'};
contrast = cfg_entry;
contrast.tag = 'contrast';
contrast.name = 'Time contrast';
contrast.strtype = 'r';
contrast.num = [1 Inf];
contrast.val = {1};
logpower = cfg_menu;
logpower.tag = 'logpower';
logpower.name = 'Take log of power';
logpower.labels = {'yes', 'no'};
logpower.values = {true, false};
logpower.val = {false};
logpower.help = {'Take the log of power before computing time contrast',...
'This is equivalent to log of the ratio.'};
result = cfg_menu;
result.tag = 'result';
result.name = 'What to output';
result.help = {'Specify output type.'};
result.labels = {
'Single image'
'Image per condition'
'Image per trial'
}';
result.values = {
'singleimage'
'bycondition'
'bytrial'
}';
result.val = {'singleimage'};
scale = cfg_menu;
scale.tag = 'scale';
scale.name = 'Unit-noise-gain';
scale.help = {'Scale power by norm of the filters (unit-noise-gain)'};
scale.labels = {'yes', 'no'};
scale.values = {'yes', 'no'};
scale.val = {'no'};
modality = cfg_menu;
modality.tag = 'modality';
modality.name = 'Modality';
modality.help = {'Specify modality'};
modality.labels = {
'MEG'
'MEGPLANAR'
'EEG'
}';
modality.values = {
'MEG'
'MEGPLANAR'
'EEG'
}';
modality.val = {'MEG'};
image_dics = cfg_branch;
image_dics.tag = 'image_dics';
image_dics.name = 'DICS image';
image_dics.val = {reference, powmethod, whatconditions, sametrials, woi, contrast, logpower, foi, taper, result, scale, modality};
res = image_dics;
return
elseif nargin < 2
error('Two input arguments are required');
end
D = BF.data.D;
S.woi = 1e-3*S.woi; % ms -> s
samples = {};
for i = 1:size(S.woi, 1)
samples{i} = D.indsample(S.woi(i, 1)):D.indsample(S.woi(i, 2));
end
if isfield(S.whatconditions, 'all')
S.whatconditions.condlabel = D.condlist;
end
for i = 1:numel(S.whatconditions.condlabel)
if S.sametrials
trials{i} = BF.features.trials(strmatch(S.whatconditions.condlabel{i},...
D.conditions(BF.features.trials)));
else
trials{i} = D.indtrial(S.whatconditions.condlabel{i}, 'GOOD');
end
if isempty(trials{i})
error('No trials matched the selection.');
end
end
if isempty(trials)
error('No trials matched the selection, check the specified condition labels');
end
alltrials = spm_vec(trials);
ntrials = length(alltrials);
channels = BF.features.(S.modality).chanind;
U = BF.features.(S.modality).U;
nchan = size(U, 1);
Cf = {};
refindx = [];
Wr = [];
if isfield(S.reference, 'refchan')
refindx = D.indchannel(S.reference.refchan.name);
if isempty(refindx)
error('The specified reference channel was not found in the data.');
end
Cr = {};
Pr = [];
if S.reference.refchan.shuffle
shuffle = randperm(ntrials);
prefix = 'dics_refcoh_shuffled';
else
shuffle = 1:ntrials;
prefix = 'dics_refcoh';
end
elseif isfield(S.reference, 'refdip')
% transform coords in MNI space into space where we are doing the beamforming
seed = spm_eeg_inv_transform_points(inv(BF.data.transforms.toMNI), S.reference.refdip);
pos = BF.sources.pos;
nvert = size(pos, 1);
dist = sqrt(sum((pos - repmat(seed, nvert, 1)).^2, 2));
[mdist, ind] = min(dist);
if mdist > 20
warning(['Closest match is ' mdist ' mm away from the specified location.']);
end
Wr = BF.inverse.(S.modality).W{ind};
prefix = 'dics_dipcoh';
else
prefix = 'dics_pow';
end
nsamples = unique(cellfun(@length, samples));
if length(nsamples) > 1
error('All time windows should be equal lentgh')
end
centerfreq = mean(S.foi);
tapsmofrq = 0.5*(abs(diff(S.foi)));
spm('Pointer', 'Watch');drawnow;
spm_progress_bar('Init', ntrials , 'Computing CSD'); drawnow;
if ntrials > 100, Ibar = floor(linspace(1, ntrials ,100));
else Ibar = 1:ntrials; end
for i = 1:ntrials
for j = 1:numel(samples)
Y = U'*squeeze(D(channels, samples{j}, alltrials(i)));
[fourier, ntap] = ft_specest_mtmfft(Y, D.time(samples{j}), 'freqoi', centerfreq, ...
'tapsmofrq', tapsmofrq, 'taper', S.taper, 'verbose', 0);
dat = transpose(fourier);
Cf{i, j} = (dat * ctranspose(dat)) ./ ntap;
if ~isempty(refindx)
Y = squeeze(D(refindx, samples{j}, alltrials(shuffle(i))));
[fourier, ntap] = ft_specest_mtmfft(Y, D.time(samples{j}), 'freqoi', centerfreq, ...
'tapsmofrq', tapsmofrq, 'taper', S.taper, 'verbose', 0);
ref = transpose(fourier);
Cr{i, j} = dat * ctranspose(ref) ./ ntap;
Pr(i, j) = ref * ctranspose(ref) ./ ntap;
end
end
if ismember(i, Ibar)
spm_progress_bar('Set', i); drawnow;
end
end
spm_progress_bar('Clear');
W = BF.inverse.(S.modality).W;
nvert = numel(W);
mCf = {};
if ~isempty(refindx)
mCr = {};
mPr = [];
end
condind = spm_unvec(1:ntrials, trials);
switch S.result
case 'singleimage'
for i = 1:size(Cf, 2)
mCf{1, i} = squeeze(sum(cat(3, Cf{:, i}), 3))./ntrials;
if ~isempty(refindx)
mCr{1, i} = squeeze(sum(cat(2, Cr{:, i}), 2))./ntrials;
mPr(1, i) = sum(Pr(:, i))./ntrials;
end
end
case 'bycondition';
for c = 1:numel(condind)
for i = 1:size(Cf, 2)
mCf{c, i} = squeeze(sum(cat(3, Cf{condind{c}, i}), 3))./length(condind{c});
if ~isempty(refindx)
mCr{c, i} = squeeze(sum(cat(2, Cr{condind{c}, i}), 2))./length(condind{c});
mPr(c, i) = sum(Pr(condind{c}, i))./length(condind{c});
end
end
end
case 'bytrial'
for c = 1:ntrials
mCf = Cf;
if ~isempty(refindx)
error('Coherence image cannot be computed for single trials');
end
end
end
spm('Pointer', 'Watch');drawnow;
for c = 1:size(mCf, 1)
spm_progress_bar('Init', nvert, ...
sprintf('Scanning grid points image %d/%d', c, size(mCf, 1))); drawnow;
if nvert > 100, Ibar = floor(linspace(1, nvert,100));
else Ibar = 1:nvert; end
pow = nan(1, nvert);
cpow = zeros(1, numel(mCf(c, :)));
for i = 1:nvert
if ~isnan(W{i})
w = W{i};
for j = 1:numel(mCf(c, :))
if ~isempty(refindx)
estimate = ft_inverse_beamformer_dics(w, mCf{c, j}, 'Cr', mCr{c, j}, 'Pr', mPr(c, j), ...
'filterinput', 'yes', 'projectnoise', S.scale, 'powmethod', S.powmethod, ...
'keepfilter', 'no', 'keepleadfield', 'no', 'keepcsd', 'no', 'feedback', 'none');
cpow(j) = estimate.coh;
elseif ~isempty(Wr)
estimate = ft_inverse_beamformer_dics(w, mCf{c, j}, 'refdip', Wr, ...
'filterinput', 'yes', 'projectnoise', S.scale, 'powmethod', S.powmethod, ...
'keepfilter', 'no', 'keepleadfield', 'no', 'keepcsd', 'no', 'feedback', 'none');
cpow(j) = estimate.coh;
else
estimate = ft_inverse_beamformer_dics(w, mCf{c, j},...
'filterinput', 'yes', 'projectnoise', S.scale, 'powmethod', S.powmethod, ...
'keepfilter', 'no', 'keepleadfield', 'no', 'keepcsd', 'no', 'feedback', 'none');
cpow(j) = estimate.pow;
end
if isequal(S.scale, 'yes')
cpow(j) = cpow(j)./estimate.noise;
end
if S.logpower
pow(i) = log(cpow)*S.contrast';
else
pow(i) = cpow*S.contrast';
end
end
end
if ismember(i, Ibar)
spm_progress_bar('Set', i); drawnow;
end
end
spm_progress_bar('Clear');
image(c).val = pow;
switch S.result
case 'singleimage'
image(c).label = [prefix '_' spm_file(D.fname, 'basename')];
case 'bycondition'
image(c).label = [prefix '_cond_' S.whatconditions.condlabel{c} '_' spm_file(D.fname, 'basename')];
case 'bytrial'
for k = 1:numel(condind)
if any(c == condind{k})
break;
end
end
image(c).label = [prefix '_cond_' S.whatconditions.condlabel{k}...
'_trial_' num2str(alltrials(c)) '_' spm_file(D.fname, 'basename')];
end
end
spm('Pointer', 'Arrow');drawnow;
res = image;