Skip to content

Commit 72f9e40

Browse files
gururaj1512kgryte
andauthored
feat: add stats/array/variancepn
PR-URL: #7484 Co-authored-by: Athan Reines <[email protected]> Reviewed-by: Athan Reines <[email protected]>
1 parent 9ffead9 commit 72f9e40

File tree

14 files changed

+1223
-0
lines changed

14 files changed

+1223
-0
lines changed
Lines changed: 180 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,180 @@
1+
<!--
2+
3+
@license Apache-2.0
4+
5+
Copyright (c) 2025 The Stdlib Authors.
6+
7+
Licensed under the Apache License, Version 2.0 (the "License");
8+
you may not use this file except in compliance with the License.
9+
You may obtain a copy of the License at
10+
11+
http://www.apache.org/licenses/LICENSE-2.0
12+
13+
Unless required by applicable law or agreed to in writing, software
14+
distributed under the License is distributed on an "AS IS" BASIS,
15+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16+
See the License for the specific language governing permissions and
17+
limitations under the License.
18+
19+
-->
20+
21+
# variancepn
22+
23+
> Calculate the [variance][variance] of an array using a two-pass algorithm.
24+
25+
<section class="intro">
26+
27+
The population [variance][variance] of a finite size population of size `N` is given by
28+
29+
<!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
30+
31+
```math
32+
\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2
33+
```
34+
35+
<!-- </equation> -->
36+
37+
where the population mean is given by
38+
39+
<!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
40+
41+
```math
42+
\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i
43+
```
44+
45+
<!-- </equation> -->
46+
47+
Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
48+
49+
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
50+
51+
```math
52+
s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2
53+
```
54+
55+
<!-- </equation> -->
56+
57+
where the sample mean is given by
58+
59+
<!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
60+
61+
```math
62+
\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i
63+
```
64+
65+
<!-- </equation> -->
66+
67+
The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
68+
69+
</section>
70+
71+
<!-- /.intro -->
72+
73+
<section class="usage">
74+
75+
## Usage
76+
77+
```javascript
78+
var variancepn = require( '@stdlib/stats/array/variancepn' );
79+
```
80+
81+
#### variancepn( x\[, correction] )
82+
83+
Computes the variance of an array.
84+
85+
```javascript
86+
var x = [ 1.0, -2.0, 2.0 ];
87+
88+
var v = variancepn( x );
89+
// returns ~4.3333
90+
```
91+
92+
The function has the following parameters:
93+
94+
- **x**: input array.
95+
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `N` corresponds to the number of array elements and `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). Default: `1.0`.
96+
97+
By default, the function computes the sample [variance][variance]. To adjust the degrees of freedom when computing the [variance][variance], provide a `correction` argument.
98+
99+
```javascript
100+
var x = [ 1.0, -2.0, 2.0 ];
101+
102+
var v = variancepn( x, 0.0 );
103+
// returns ~2.8889
104+
```
105+
106+
</section>
107+
108+
<!-- /.usage -->
109+
110+
<section class="notes">
111+
112+
## Notes
113+
114+
- If provided an empty array, the function returns `NaN`.
115+
- If provided a `correction` argument which is greater than or equal to the number of elements in a provided input array, the function returns `NaN`.
116+
- The function supports array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]).
117+
118+
</section>
119+
120+
<!-- /.notes -->
121+
122+
<section class="examples">
123+
124+
## Examples
125+
126+
<!-- eslint no-undef: "error" -->
127+
128+
```javascript
129+
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
130+
var variancepn = require( '@stdlib/stats/array/variancepn' );
131+
132+
var x = discreteUniform( 10, -50, 50, {
133+
'dtype': 'float64'
134+
});
135+
console.log( x );
136+
137+
var v = variancepn( x );
138+
console.log( v );
139+
```
140+
141+
</section>
142+
143+
<!-- /.examples -->
144+
145+
* * *
146+
147+
<section class="references">
148+
149+
## References
150+
151+
- Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a].
152+
- Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a].
153+
154+
</section>
155+
156+
<!-- /.references -->
157+
158+
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
159+
160+
<section class="related">
161+
162+
</section>
163+
164+
<!-- /.related -->
165+
166+
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
167+
168+
<section class="links">
169+
170+
[variance]: https://en.wikipedia.org/wiki/Variance
171+
172+
[@neely:1966a]: https://doi.org/10.1145/365719.365958
173+
174+
[@schubert:2018a]: https://doi.org/10.1145/3221269.3223036
175+
176+
[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor
177+
178+
</section>
179+
180+
<!-- /.links -->
Lines changed: 96 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,96 @@
1+
/**
2+
* @license Apache-2.0
3+
*
4+
* Copyright (c) 2025 The Stdlib Authors.
5+
*
6+
* Licensed under the Apache License, Version 2.0 (the "License");
7+
* you may not use this file except in compliance with the License.
8+
* You may obtain a copy of the License at
9+
*
10+
* http://www.apache.org/licenses/LICENSE-2.0
11+
*
12+
* Unless required by applicable law or agreed to in writing, software
13+
* distributed under the License is distributed on an "AS IS" BASIS,
14+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
* See the License for the specific language governing permissions and
16+
* limitations under the License.
17+
*/
18+
19+
'use strict';
20+
21+
// MODULES //
22+
23+
var bench = require( '@stdlib/bench' );
24+
var uniform = require( '@stdlib/random/array/uniform' );
25+
var isnan = require( '@stdlib/math/base/assert/is-nan' );
26+
var pow = require( '@stdlib/math/base/special/pow' );
27+
var pkg = require( './../package.json' ).name;
28+
var variancepn = require( './../lib' );
29+
30+
31+
// VARIABLES //
32+
33+
var options = {
34+
'dtype': 'generic'
35+
};
36+
37+
38+
// FUNCTIONS //
39+
40+
/**
41+
* Creates a benchmark function.
42+
*
43+
* @private
44+
* @param {PositiveInteger} len - array length
45+
* @returns {Function} benchmark function
46+
*/
47+
function createBenchmark( len ) {
48+
var x = uniform( len, -10, 10, options );
49+
return benchmark;
50+
51+
function benchmark( b ) {
52+
var v;
53+
var i;
54+
55+
b.tic();
56+
for ( i = 0; i < b.iterations; i++ ) {
57+
v = variancepn( x, 1.0 );
58+
if ( isnan( v ) ) {
59+
b.fail( 'should not return NaN' );
60+
}
61+
}
62+
b.toc();
63+
if ( isnan( v ) ) {
64+
b.fail( 'should not return NaN' );
65+
}
66+
b.pass( 'benchmark finished' );
67+
b.end();
68+
}
69+
}
70+
71+
72+
// MAIN //
73+
74+
/**
75+
* Main execution sequence.
76+
*
77+
* @private
78+
*/
79+
function main() {
80+
var len;
81+
var min;
82+
var max;
83+
var f;
84+
var i;
85+
86+
min = 1; // 10^min
87+
max = 6; // 10^max
88+
89+
for ( i = min; i <= max; i++ ) {
90+
len = pow( 10, i );
91+
f = createBenchmark( len );
92+
bench( pkg+':len='+len, f );
93+
}
94+
}
95+
96+
main();
Lines changed: 42 additions & 0 deletions
Loading

0 commit comments

Comments
 (0)