CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification, arxiv
PaddlePaddle training/validation code and pretrained models for CrossViT.
The official pytorch implementation is here.
This implementation is developed by PPViT.
CrossVit Model Overview- Update (2021-09-27): Model FLOPs and # params are uploaded.
- Update (2021-09-16): Code is released and ported weights are uploaded.
- Update (2021-09-22): Support more models eval.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
cross_vit_tiny_224 | 73.20 | 91.90 | 6.9M | 1.3G | 224 | 0.875 | bicubic | google/baidu(scvb) |
cross_vit_small_224 | 81.01 | 95.33 | 26.7M | 5.2G | 224 | 0.875 | bicubic | google/baidu(32us) |
cross_vit_base_224 | 82.12 | 95.87 | 104.7M | 20.2G | 224 | 0.875 | bicubic | google/baidu(jj2q) |
cross_vit_9_224 | 73.78 | 91.93 | 8.5M | 1.6G | 224 | 0.875 | bicubic | google/baidu(mjcb) |
cross_vit_15_224 | 81.51 | 95.72 | 27.4M | 5.2G | 224 | 0.875 | bicubic | google/baidu(n55b) |
cross_vit_18_224 | 82.29 | 96.00 | 43.1M | 8.3G | 224 | 0.875 | bicubic | google/baidu(xese) |
cross_vit_9_dagger_224 | 76.92 | 93.61 | 8.7M | 1.7G | 224 | 0.875 | bicubic | google/baidu(58ah) |
cross_vit_15_dagger_224 | 82.23 | 95.93 | 28.1M | 5.6G | 224 | 0.875 | bicubic | google/baidu(qwup) |
cross_vit_18_dagger_224 | 82.51 | 96.03 | 44.1M | 8.7G | 224 | 0.875 | bicubic | google/baidu(qtw4) |
cross_vit_15_dagger_384 | 83.75 | 96.75 | 28.1M | 16.4G | 384 | 1.0 | bicubic | google/baidu(w71e) |
cross_vit_18_dagger_384 | 84.17 | 96.82 | 44.1M | 25.8G | 384 | 1.0 | bicubic | google/baidu(99b6) |
|
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./crossvit_base_224.pdparams
, to use the crossvit_base_224
model in python:
from config import get_config
from crossvit import build_crossvit as build_model
# config files in ./configs/
config = get_config('./configs/crossvit_base_224.yaml.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./crossvit_base_224')
model.set_dict(model_state_dict)
To evaluate CrossViT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/crossvit_base_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./crossvit_base_224'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/crossvit_base_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./crossvit_base_224'
To train the CrossViT Transformer model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/crossvit_base_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/crossvit_base_224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{chen2021crossvit,
title={Crossvit: Cross-attention multi-scale vision transformer for image classification},
author={Chen, Chun-Fu and Fan, Quanfu and Panda, Rameswar},
journal={arXiv preprint arXiv:2103.14899},
year={2021}
}