@@ -33,70 +33,70 @@ def aamp_mmotifs(
33
33
34
34
Parameters
35
35
----------
36
- T: numpy.ndarray
36
+ T : numpy.ndarray
37
37
The multi-dimensional time series or sequence
38
38
39
- P: numpy.ndarray
39
+ P : numpy.ndarray
40
40
Multi-dimensional Matrix Profile of T
41
41
42
- I: numpy.ndarray
42
+ I : numpy.ndarray
43
43
Multi-dimensional Matrix Profile indices
44
44
45
45
min_neighbors : int, default 1
46
46
The minimum number of similar matches a subsequence needs to have in order
47
47
to be considered a motif. This defaults to `1`, which means that a subsequence
48
48
must have at least one similar match in order to be considered a motif.
49
49
50
- max_distance: flaot, default None
50
+ max_distance : flaot, default None
51
51
Maximal distance that is allowed between a query subsequence
52
52
(a candidate motif) and all subsequences in T to be considered as a match.
53
53
If None, this defaults to
54
54
`np.nanmax([np.nanmean(D) - 2 * np.nanstd(D), np.nanmin(D)])`
55
55
(i.e. at least the closest match will be returned).
56
56
57
- cutoffs: numpy.ndarray or float, default None
57
+ cutoffs : numpy.ndarray or float, default None
58
58
The largest matrix profile value (distance) for each dimension of the
59
59
multidimensional matrix profile that a multidimenisonal candidate motif is
60
60
allowed to have. If `cutoffs` is a scalar value, then this value will be
61
61
applied to every dimension.
62
62
63
- max_matches: int, default 10
63
+ max_matches : int, default 10
64
64
The maximum number of similar matches (nearest neighbors) to return for each
65
65
motif. The first match is always the self/trivial-match for each motif.
66
66
67
- max_motifs: int, default 1
67
+ max_motifs : int, default 1
68
68
The maximum number of motifs to return
69
69
70
- atol: float, default 1e-8
70
+ atol : float, default 1e-8
71
71
The absolute tolerance parameter. This value will be added to `max_distance`
72
72
when comparing distances between subsequences.
73
73
74
- k: int, default None
74
+ k : int, default None
75
75
The number of dimensions (`k + 1`) required for discovering all motifs. This
76
76
value is available for doing guided search or, together with `include`, for
77
77
constrained search. If `k is None`, then this will be automatically be computed
78
78
for each motif using MDL (unconstrained search).
79
79
80
- include: numpy.ndarray, default None
80
+ include : numpy.ndarray, default None
81
81
A list of (zero based) indices corresponding to the dimensions in T that must be
82
82
included in the constrained multidimensional motif search.
83
83
84
- p: float, default 2.0
84
+ p : float, default 2.0
85
85
The p-norm to apply for computing the Minkowski distance.
86
86
87
87
Returns
88
88
-------
89
- motif_distances: numpy.ndarray
89
+ motif_distances : numpy.ndarray
90
90
The distances corresponding to a set of subsequence matches for each motif.
91
91
92
- motif_indices: numpy.ndarray
92
+ motif_indices : numpy.ndarray
93
93
The indices corresponding to a set of subsequences matches for each motif.
94
94
95
- motif_subspaces: list
95
+ motif_subspaces : list
96
96
A list consisting of arrays that contain the `k`-dimensional
97
97
subspace for each motif.
98
98
99
- motif_mdls: list
99
+ motif_mdls : list
100
100
A list consisting of arrays that contain the mdl results for
101
101
finding the dimension of each motif
102
102
0 commit comments