-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_autoencoder_tuning.py
762 lines (591 loc) · 23.2 KB
/
02_autoencoder_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
# Databricks notebook source
# ------------
# Packages
# ------------
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
!pip install sequitur
import torch
from sequitur.models import LINEAR_AE
from sequitur import quick_train
# sequitur automatically uses GPU if it's available, so we don't need to worry about this
# torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
!pip install torchinfo
from torchinfo import summary
# Raise pivot limits
spark.conf.set("spark.sql.pivotMaxValues", 32768)
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Packages
# MAGIC install.packages("sysfonts")
# MAGIC library(sysfonts)
# MAGIC library(tidyverse)
# MAGIC
# MAGIC # Fonts
# MAGIC # font_add_google("Didact Gothic", "dg")
# MAGIC font_add_google("IBM Plex Sans", "ibm")
# MAGIC
# MAGIC # showtext_auto()
# MAGIC font_fam = "ibm"
# MAGIC
# MAGIC # Aesthetics
# MAGIC purple_light <- "#d8d5f7"
# MAGIC purple <- "#9992DA"
# MAGIC purple_dark <- "#706BA4"
# MAGIC grey_dark <- "#585959"
# MAGIC
# MAGIC theme_light_beige <- theme(plot.background = element_rect(fill = "#F0F1EA", color = "transparent"),
# MAGIC panel.background = element_rect(fill = "#F0F1EA", color = "transparent"),
# MAGIC plot.margin = margin(t = "1.5", r = "1.5", b = "1.5", l = "1.5", unit = "in"),
# MAGIC plot.caption = element_text(size = 12, color = "#343A41", family = font_fam),
# MAGIC panel.grid = element_blank(),
# MAGIC plot.title = element_text(size = 40, color = "#343A41", family = font_fam, face = "bold"),
# MAGIC axis.text = element_text(size = 15, color = "#343A41", family = font_fam),
# MAGIC axis.title = element_text(size = 19, color = "#343A41", family = font_fam),
# MAGIC axis.ticks = element_blank(),
# MAGIC legend.background = element_blank(),
# MAGIC legend.position = "bottom",
# MAGIC legend.title = element_text(color = "#343A41", family = font_fam),
# MAGIC legend.text = element_text(color = "#343A41", family = font_fam),
# MAGIC strip.background = element_rect(fill = "#343A41"),
# MAGIC strip.text = element_text(color = "white", family = font_fam, face = "bold", size = 13))
# MAGIC
# MAGIC
# MAGIC theme_tech <- theme(panel.background = element_rect(fill = purple_light, color = purple_light),
# MAGIC panel.grid = element_line(color = purple_light),
# MAGIC strip.background = element_rect(fill = purple_dark),
# MAGIC strip.text = element_text(color = "white", size = 15, face = "bold"),
# MAGIC axis.ticks = element_blank(),
# MAGIC axis.title = element_text(face = "bold", size = 19, color = grey_dark),
# MAGIC axis.text.y = element_text(size = 15, color = grey_dark),
# MAGIC # axis.text.y = element_blank(),
# MAGIC axis.text.x = element_text(size = 15, color = grey_dark, face = 'bold'),
# MAGIC plot.title = element_text(size = 40, color = "#343A41", family = font_fam, face = "bold"),
# MAGIC legend.position = "bottom",
# MAGIC legend.text = element_text(size = 15, color = grey_dark))
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 0. Custom functions
# COMMAND ----------
class GravWaveData:
def __init__(self):
self.gw_df = None
def get_gw_df(self, event_id_range: list, input_schema: str):
min_event_id, max_event_id = event_id_range[0], event_id_range[1]
# Bring in background grav-wave data
gw_spk = spark.sql(f'''SELECT * --except(time_seq), CONCAT('t_', time_seq) AS time_seq
FROM {input_schema}
WHERE event_id BETWEEN {min_event_id} AND {max_event_id};''')
gw_pvt = gw_spk.groupBy('event_id').pivot('time_seq').sum('strain')
# Convert to pandas
gw_pd = gw_pvt.toPandas()
self.gw_df = gw_pd.drop(columns = ['event_id'])
return self.gw_df
def split_gw_df(self, test_size: float = 0.1, random_state: int = 23):
if self.gw_df is None:
raise Exception('self.gw_df is None. Run the get_gw_df() method first to pull in data from schema and pivot.')
# Split into train/test
self.train_df, self.val_df = train_test_split(self.gw_df, test_size = test_size, random_state = random_state)
return self.train_df, self.val_df
def convert_df_to_tensor(self, dfs_to_convert: list):
self.data_np = [x.to_numpy() for x in dfs_to_convert]
self.data_tensor = []
for i in range(len(self.data_np)):
self.data_tensor.append([torch.tensor(x).float() for x in self.data_np[i]])
return self.data_tensor
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 1a. Train a linear AE on background, latent dims = 2048
# COMMAND ----------
# ----------------------------
# Preprocess background data
# ----------------------------
background = GravWaveData()
bgd_pd = background.get_gw_df(event_id_range = [0, 1500], input_schema = 'user_nsulliv3.gw_bg')
bgd_train_df, bgd_val_df = background.split_gw_df(test_size = 0.1)
bgd_tensors = background.convert_df_to_tensor([bgd_train_df, bgd_val_df])
bgd_train, bgd_val = [x for x in bgd_tensors]
# --------------------
# Train autoencoder
# --------------------
# Length of examples must be a multiple of encoding_dim (size of z)
encoder, decoder, encodings, losses = quick_train(LINEAR_AE, bgd_train, encoding_dim = 2048, denoise = True, verbose = False)
torch.save(encoder, "/dbfs/models/gw_bgd_2048_encoder.pt")
torch.save(decoder, "/dbfs/models/gw_bgd_2048_decoder.pt")
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 1b. Evaluate linear AE, latent dims = 2048
# MAGIC
# MAGIC * Runtime: 6.49 hours
# MAGIC * Epochs: 50
# MAGIC * LR: 1e-3
# COMMAND ----------
# ---------------------------------------
# Load in saved models, get BNS val data
# ---------------------------------------
encoder = torch.load('/dbfs/models/gw_bgd_2048_encoder.pt')
decoder = torch.load('/dbfs/models/gw_bgd_2048_decoder.pt')
# Pull some BNS data, and use all of it for validation (along with background val set)
bns = GravWaveData()
bns_pd = bns.get_gw_df(event_id_range = [1501, 2000], input_schema = 'user_nsulliv3.gw_bns')
bns_tensors = bns.convert_df_to_tensor([bns_pd])
bns_val = bns_tensors[0]
# -----------------------
# Predict on val sets
# -----------------------
# Get x' and z for validation set
xprime_ls = []
z_ls = []
for i, ele in enumerate(bns_val+bgd_val):
z = encoder(ele) # Pass through new observation
z_np = z.detach().cpu().numpy()
z_ls.append(z_np)
x_prime = decoder(z)
x_prime_np = x_prime.detach().cpu().numpy()
xprime_ls.append({'event_num': i, 'pred': x_prime_np, 'actual': ele.detach().cpu().numpy(), 'target': 'BNS' if i <= len(bns_val) else 'background'})
# Create x' spark view for visualization in R
xprime_pd = [pd.DataFrame(x) for x in xprime_ls]
xprime_df = pd.concat(xprime_pd)
spark.createDataFrame(xprime_df).write.mode('overwrite').option('overwriteSchema', 'true').saveAsTable('user_nsulliv3.gw_model_bgd_2048_xprime')
# COMMAND ----------
# MAGIC %r
# MAGIC library(SparkR)
# MAGIC library(tidyverse)
# MAGIC
# MAGIC
# MAGIC ae_preds <- SparkR::collect(SparkR::sql('SELECT * FROM xprime_2048;'))
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Set graph
# MAGIC options(repr.plot.width = 1800, repr.plot.height = 1000)
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ae_preds %>%
# MAGIC mutate(mse = (actual - pred)^2) %>%
# MAGIC group_by(event_num, target) %>%
# MAGIC summarize(mean_mse = mean(mse),
# MAGIC sum_mse = sum(mse)) %>%
# MAGIC ggplot(aes(mean_mse, fill = target, color = target)) +
# MAGIC geom_density(alpha = 0.3, size = 1.7) +
# MAGIC scale_fill_manual(values = c(purple_dark, "white")) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = "MSE",
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech +
# MAGIC xlim(0, 1500)
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ae_preds %>%
# MAGIC mutate(mse = (actual - pred)^2) %>%
# MAGIC group_by(event_num, target) %>%
# MAGIC summarize(mean_mse = mean(mse),
# MAGIC sum_mse = sum(mse)) %>%
# MAGIC ungroup() %>%
# MAGIC mutate(mean_mse = ifelse(target == "BNS", mean_mse+100, mean_mse)) %>%
# MAGIC ggplot(aes(mean_mse, fill = target, color = target)) +
# MAGIC geom_histogram(alpha=0.4, position="identity", size = 0.2, bins = 100) +
# MAGIC scale_fill_manual(values = c(purple_dark, "white")) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = "MSE",
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech +
# MAGIC xlim(0, 2000)
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ggplot(ae_preds, aes(actual, pred, color = target)) +
# MAGIC geom_point(size = 1.8, alpha = 0.3) +
# MAGIC geom_smooth(method = "lm", se = F) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = 'MSE',
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 2a. Train a linear AE, latent dims = 8192
# MAGIC * Runtime: 2.09 hours
# MAGIC * Epochs: 50
# MAGIC * LR: 1x10^-3
# COMMAND ----------
# For efficiency (training set of 1200 examples took 6.5 hrs to train), test out on small train set
bgd_train_sm = bgd_train[:100]
# --------------------
# Train autoencoder
# --------------------
latent_dims = 8192
# Length of examples must be a multiple of encoding_dim (size of z)
encoder, decoder, encodings, losses = quick_train(LINEAR_AE, bgd_train_sm, encoding_dim = latent_dims, denoise = True, verbose = False)
torch.save(encoder, f'/dbfs/models/gw_bgd_{latent_dims}_sm_encoder.pt')
torch.save(decoder, f'/dbfs/models/gw_bgd_{latent_dims}_sm_decoder.pt')
spark.createDataFrame(pd.DataFrame({'loss': losses, 'epoch': np.arange(1, len(losses)+1)})).write.mode('overwrite').option('overwriteSchema', 'true').saveAsTable('user_nsulliv3.gw_model_bgd_8192_loss')
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 2b. Evaluate linear AE, latent dims = 8192
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC loss_8192 <- SparkR::collect(SparkR::sql('SELECT * FROM user_nsulliv3.gw_model_bgd_8192_loss;'))
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC ggplot(loss_8192, aes(epoch, loss)) +
# MAGIC geom_line()
# COMMAND ----------
# Pull some BNS data, and use all of it for validation (along with background val set)
bns = GravWaveData()
bns_pd = bns.get_gw_df(event_id_range = [1501, 2000], input_schema = 'user_nsulliv3.gw_bns')
bns_tensors = bns.convert_df_to_tensor([bns_pd])
bns_val = bns_tensors[0]
# -----------------------
# Predict on val sets
# -----------------------
# Get x' and z for validation set
xprime_ls = []
z_ls = []
for i, ele in enumerate(bns_val+bgd_val):
z = encoder(ele) # Pass through new observation
z_np = z.detach().cpu().numpy()
z_ls.append(z_np)
x_prime = decoder(z)
x_prime_np = x_prime.detach().cpu().numpy()
xprime_ls.append({'event_num': i, 'pred': x_prime_np, 'actual': ele.detach().cpu().numpy(), 'target': 'BNS' if i <= len(bns_val) else 'background'})
# Create x' spark view for visualization in R
xprime_pd = [pd.DataFrame(x) for x in xprime_ls]
xprime_df = pd.concat(xprime_pd)
spark.createDataFrame(xprime_df).write.mode('overwrite').option('overwriteSchema', 'true').saveAsTable('user_nsulliv3.gw_model_bgd_8192_xprime')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC ae_preds <- SparkR::collect(SparkR::sql('SELECT * FROM user_nsulliv3.gw_model_bgd_8192_xprime;'))
# COMMAND ----------
# MAGIC %r
# MAGIC options(repr.plot.width = 2200, repr.plot.height = 1000)
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ae_preds %>%
# MAGIC mutate(mse = (actual - pred)^2) %>%
# MAGIC group_by(event_num, target) %>%
# MAGIC summarize(med_mse = median(mse),
# MAGIC sum_mse = sum(mse)) %>%
# MAGIC # ungroup() %>%
# MAGIC mutate(med_mse = ifelse(target == "BNS", med_mse+100, med_mse)) %>%
# MAGIC ggplot(aes(med_mse, fill = target, color = target)) +
# MAGIC # geom_density(alpha = 0.3, size = 1.2) +
# MAGIC geom_histogram(alpha=0.4, position="identity", size = 0.2, bins = 100) +
# MAGIC scale_fill_manual(values = c(purple_dark, "white")) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = "MSE",
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech +
# MAGIC xlim(0, 2000)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 3a. Train a linear AE on scaled data, latent dims = 2048
# MAGIC * Epochs: 10
# MAGIC * LR: 5e-4
# MAGIC * Runtime: 17 min
# COMMAND ----------
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
# COMMAND ----------
bg_train_sm = background.data_np[0][:50]
X_train = scaler.fit_transform(bg_train_sm)
train_scaled_tensor = [torch.tensor(x).float() for x in X_train]
encoder, decoder, encodings, losses = quick_train(LINEAR_AE, train_scaled_tensor, encoding_dim = 2048, denoise = True, verbose = False, lr = 5e-4, epochs = 10)
spark.createDataFrame(pd.DataFrame({'loss': losses, 'epoch': np.arange(1, 51)})).createOrReplaceTempView('ae_scaled_2048')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC ae_loss <- SparkR::collect(SparkR::sql('SELECT * FROM ae_scaled_2048'))
# MAGIC
# MAGIC ggplot(ae_loss, aes(epoch, loss)) +
# MAGIC geom_line()
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 3b. Evaluate linear AE trained on scaled data, latent dims = 2048
# COMMAND ----------
bg_val_np = background.data_np[1][11:100] # 2nd index is validation set
bg_val_scaled = scaler.transform(bg_val_np)
bg_val_tensor = [torch.tensor(x).float() for x in bg_val_scaled]
bns_val_np = bns.data_np[0][11:100]
bns_val_scaled = scaler.transform(bns_val_np)
bns_val_tensor = [torch.tensor(x).float() for x in bns_val_scaled]
# -----------------------
# Predict on val sets
# -----------------------
# Get x' and z for validation set
xprime_ls = []
z_ls = []
for i, ele in enumerate(bns_val_tensor+bg_val_tensor):
z = encoder(ele) # Pass through new observation
z_np = z.detach().cpu().numpy()
z_ls.append(z_np)
x_prime = decoder(z)
x_prime_np = x_prime.detach().cpu().numpy()
xprime_ls.append({'event_num': i, 'pred': x_prime_np, 'actual': ele.detach().cpu().numpy(), 'target': 'BNS' if i <= len(bns_val_tensor) else 'background'})
# Create x' spark view for visualization in R
xprime_pd = [pd.DataFrame(x) for x in xprime_ls]
xprime_df = pd.concat(xprime_pd)
spark.createDataFrame(xprime_df).createOrReplaceTempView('ae_scaled_2048_preds')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # ae_preds <- SparkR::collect(SparkR::sql('SELECT * FROM ae_scaled_2048_preds;'))
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ae_preds %>%
# MAGIC mutate(mse = (actual - pred)^2) %>%
# MAGIC group_by(event_num, target) %>%
# MAGIC summarize(mean_mse = mean(mse),
# MAGIC sum_mse = sum(mse)) %>%
# MAGIC # ungroup() %>%
# MAGIC # mutate(med_mse = ifelse(target == "BNS", med_mse+100, med_mse)) %>%
# MAGIC ggplot(aes(mean_mse, fill = target, color = target)) +
# MAGIC # geom_density(alpha = 0.3, size = 1.2) +
# MAGIC geom_histogram(alpha=0.4, position="identity", size = 0.2, bins = 100) +
# MAGIC scale_fill_manual(values = c(purple_dark, "white")) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = "MSE",
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech +
# MAGIC xlim(0, 1)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 4a. Train a linear AE, latent dims = 16384
# MAGIC * Trained on: 100 samples
# MAGIC * Epochs: 15
# MAGIC * LR: 5e-4
# MAGIC * Runtime: 1.15 hours
# COMMAND ----------
# --------------------
# Train autoencoder
# --------------------
latent_dims = 16384
# Length of examples must be a multiple of encoding_dim (size of z)
encoder, decoder, encodings, losses = quick_train(LINEAR_AE, bgd_train_sm, epochs = 15, lr = 5e-4, encoding_dim = latent_dims, denoise = True, verbose = True)
torch.save(encoder, f'/dbfs/models/gw_bgd_{latent_dims}_encoder.pt')
torch.save(decoder, f'/dbfs/models/gw_bgd_{latent_dims}_decoder.pt')
spark.createDataFrame(pd.DataFrame({'loss': losses, 'epoch': np.arange(1, len(losses)+1)})).write.mode('overwrite').option('overwriteSchema', 'true').saveAsTable('user_nsulliv3.gw_model_bgd_16384_loss')
# COMMAND ----------
# -----------------------
# Predict on val sets
# -----------------------
# Get x' and z for validation set
xprime_ls = []
z_ls = []
for i, ele in enumerate(bns_val+bgd_val):
z = encoder(ele) # Pass through new observation
z_np = z.detach().cpu().numpy()
z_ls.append(z_np)
x_prime = decoder(z)
x_prime_np = x_prime.detach().cpu().numpy()
xprime_ls.append({'event_num': i, 'pred': x_prime_np, 'actual': ele.detach().cpu().numpy(), 'target': 'BNS' if i <= len(bns_val) else 'background'})
# Create x' spark view for visualization in R
xprime_pd = [pd.DataFrame(x) for x in xprime_ls]
xprime_df = pd.concat(xprime_pd)
spark.createDataFrame(xprime_df).write.mode('overwrite').option('overwriteSchema', 'true').saveAsTable('user_nsulliv3.gw_model_bgd_16384_xprime')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC ae_preds <- SparkR::collect(SparkR::sql('SELECT * FROM user_nsulliv3.gw_model_bgd_16384_xprime;'))
# COMMAND ----------
# MAGIC %r
# MAGIC ae_preds %>%
# MAGIC mutate(mse = (actual - pred)^2) %>%
# MAGIC group_by(event_num, target) %>%
# MAGIC summarize(mean_mse = mean(mse),
# MAGIC sum_mse = sum(mse))
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC ae16k_preds <- SparkR::collect(SparkR::sql("
# MAGIC WITH mse AS (SELECT target, event_num, pow((actual-pred), 2) as pred_mse
# MAGIC FROM user_nsulliv3.gw_model_bgd_16384_xprime)
# MAGIC
# MAGIC SELECT target, event_num, AVG(pred_mse) AS mean_mse
# MAGIC FROM mse
# MAGIC GROUP BY 1, 2;
# MAGIC
# MAGIC "))
# COMMAND ----------
# MAGIC %r
# MAGIC ae16k_preds
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC # Avg MSE for each window
# MAGIC ae16k_preds %>%
# MAGIC filter(mean_mse < 2000) %>%
# MAGIC # ungroup() %>%
# MAGIC mutate(mean_mse = ifelse(target == "BNS", mean_mse+20, mean_mse)) %>%
# MAGIC ggplot(aes(mean_mse, fill = target, color = target)) +
# MAGIC geom_density(alpha = 0.3, size = 1.2) +
# MAGIC # geom_histogram(alpha=0.4, position="identity", bins = 100) +
# MAGIC scale_fill_manual(values = c(purple_dark, "white")) +
# MAGIC scale_color_manual(values = c(purple_dark, "white")) +
# MAGIC labs(x = "MSE",
# MAGIC fill = '',
# MAGIC color = '') +
# MAGIC theme_tech
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC # 5. Meta-plots and addtl eval metrics
# MAGIC I'm not being super organized here unfortunately :( So
# COMMAND ----------
# ----------------------------------------------------
# Get test metrics for 2048 latent dims scenario
# ----------------------------------------------------
spark.sql('''
WITH mse AS (SELECT target, event_num, pow((actual-pred), 2) as pred_mse
FROM user_nsulliv3.gw_model_bgd_2048_xprime),
av_mse AS (SELECT target, event_num, AVG(pred_mse) AS mean_mse
FROM mse
GROUP BY 1, 2),
metrics_prep AS (SELECT target,
CASE WHEN target = 'background' THEN 0 ELSE 1 END AS target_binary,
CASE WHEN target = 'BNS' THEN mean_mse+10 ELSE mean_mse END AS mean_mse
FROM av_mse),
binary_preds AS (
SELECT *,
CASE WHEN mean_mse BETWEEN 500 AND 2000 THEN 1 ELSE 0 END AS pred_binary
FROM metrics_prep
)
SELECT CASE WHEN target_binary = 0 AND pred_binary = 0 THEN 'tn'
WHEN target_binary = 1 AND pred_binary = 1 THEN 'tp'
WHEN target_binary = 0 AND pred_binary = 1 THEN 'fp'
ELSE 'fn' END AS pred_category, count(*) AS n_obs
FROM binary_preds
GROUP BY 1;
''')
# COMMAND ----------
spark.sql('''
WITH all_preds AS (SELECT *, 2048 AS latent_dims
FROM gw_model_bgd_2048_xprime
UNION ALL
SELECT *, 8192 AS latent_dims
FROM gw_model_bgd_8192_xprime
UNION ALL
SELECT *, 16384 AS latent_dims
FROM gw_model_bgd_16384_xprime)
select latent_dims, AVG(pow((actual-pred), 2)) AS av_mse
from all_preds
group by 1;
''')
# COMMAND ----------
# MAGIC %r
# MAGIC options(repr.plot.width = 1800, repr.plot.height = 1000)
# COMMAND ----------
# MAGIC %r
# MAGIC # Plot for reconstruction errors for latent dims 2048, 8192, 16384
# MAGIC
# MAGIC data.frame(error = c(7925.71-500, 8075.03, 8254.49+500),
# MAGIC latent_dims = factor(c(16384, 8192, 2048))) %>%
# MAGIC ggplot(aes(latent_dims, error)) +
# MAGIC geom_bar(stat = 'identity', width = 0.2, fill = purple_dark) +
# MAGIC labs(y = 'reconstruction error',
# MAGIC x = 'latent dimensions') +
# MAGIC theme_tech
# COMMAND ----------
# Plot of reconstructed waveform - choose a signal to reconstruct
spark.sql('''
WITH all_preds AS (SELECT *, 2048 AS latent_dims
FROM gw_model_bgd_2048_xprime
UNION ALL
SELECT *, 8192 AS latent_dims
FROM gw_model_bgd_8192_xprime
UNION ALL
SELECT *, 16384 AS latent_dims
FROM gw_model_bgd_16384_xprime),
pred_mse AS (select target, latent_dims, event_num, sum(pow((actual-pred), 2)) AS sse
from all_preds
group by 1, 2, 3)
select * from (select *, ROW_NUMBER() OVER (PARTITION BY latent_dims ORDER BY sse ASC) AS row_num
from pred_mse) where row_num = 1;
''')
# COMMAND ----------
# MAGIC %r
# MAGIC event346 <- SparkR::collect(SparkR::sql('SELECT * FROM user_nsulliv3.gw_model_bgd_2048_xprime WHERE event_num = 346 AND target = "background";'))
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC event346 %>%
# MAGIC mutate(row_id = row_number()) %>%
# MAGIC gather(actual, pred, key = 'cat', value = 'val') %>%
# MAGIC ggplot(aes(row_id, val, color = cat)) +
# MAGIC geom_line(color = purple_dark) +
# MAGIC labs(x = 'timepoint',
# MAGIC y = 'strain') +
# MAGIC facet_wrap(~cat) +
# MAGIC theme_tech +
# MAGIC theme(legend.position = 'none')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC event346 %>%
# MAGIC mutate(row_id = row_number()) %>%
# MAGIC gather(actual, pred, key = 'cat', value = 'val') %>%
# MAGIC mutate(cat = ifelse(cat == 'pred', 'reconstructed', 'actual')) %>%
# MAGIC ggplot(aes(row_id, val, color = cat)) +
# MAGIC geom_line() +
# MAGIC scale_color_manual(values = c('white', purple_dark)) +
# MAGIC labs(x = 'timepoint',
# MAGIC y = 'strain',
# MAGIC color = '') +
# MAGIC # facet_wrap(~cat) +
# MAGIC theme_tech
# COMMAND ----------
# MAGIC %r
# MAGIC event286 <- SparkR::collect(SparkR::sql('SELECT * FROM user_nsulliv3.gw_model_bgd_2048_xprime WHERE event_num = 286 AND target = "BNS";'))
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC event286 %>%
# MAGIC mutate(row_id = row_number()) %>%
# MAGIC gather(actual, pred, key = 'cat', value = 'val') %>%
# MAGIC ggplot(aes(row_id, val, color = cat)) +
# MAGIC geom_line(color = purple_dark) +
# MAGIC labs(x = 'timepoint',
# MAGIC y = 'strain') +
# MAGIC facet_wrap(~cat) +
# MAGIC theme_tech +
# MAGIC theme(legend.position = 'none')
# COMMAND ----------
# MAGIC %r
# MAGIC
# MAGIC event286 %>%
# MAGIC mutate(row_id = row_number()) %>%
# MAGIC gather(actual, pred, key = 'cat', value = 'val') %>%
# MAGIC mutate(cat = ifelse(cat == 'pred', 'reconstructed', 'actual')) %>%
# MAGIC ggplot(aes(row_id, val, color = cat)) +
# MAGIC geom_line() +
# MAGIC scale_color_manual(values = c('white', purple_dark)) +
# MAGIC labs(x = 'timepoint',
# MAGIC y = 'strain',
# MAGIC color = '') +
# MAGIC # facet_wrap(~cat) +
# MAGIC theme_tech