-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcepts.py
1117 lines (829 loc) · 26.2 KB
/
concepts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.4'
# jupytext_version: 1.2.4
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# rise:
# enable_chalkboard: true
# autolaunch: true
# ---
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# # ![Python logo](data/python.ico) Hello Python!
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ## Python: history and now
#
# - Created by [Guido van Rossum](https://en.wikipedia.org/wiki/Guido_van_Rossum) in 1990. At the time he was a postdoc at CWI, Amsterdam, currently he is at Dropbox.
# - Named after [**Monty Python**](https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus), Guido is a big fan.
# - Development guided by the Python Steering Council,
# - entirely community led effort,
# - supported by the Python Software Foundation.
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ## The Python ecosystem
#
# - Ease of use among its primary considerations
# - Highly extendable, including through extensions written in lower level languages like C/C++.
# - Natively there are certain performance limitations (e.g. *Global Interpreter Lock* or GIL), but effectively not a limitation as it can be worked around with extensions; e.g. `numpy`, `xarray`, `pandas`, `numba`, `pyarrow`, etc.
# - Writing *native* extensions is easier with `Cython` (Python + `type` information + ability to by-pass the GIL)
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Understanding variables
#
# Variables hold a *reference* to a value,
# - can be *objects* of simple *types* (e.g. numbers, strings, booleans),
#
# - user defined types,
#
# - *sequences* or *containers* (contains other variables), and others (esp. in Python).
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Literals
# -
# values
1, 3.14, 0b10, 0x1e, "string", b"bytes"
# + {"slideshow": {"slide_type": "fragment"}}
a = 2.14 # variable assignment: hold a reference to a value
a + 1 # the variable refers to the value later
# + {"slideshow": {"slide_type": "fragment"}}
a # what is a?
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# To refer to an `object` later, you must store a reference to it in a variable
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Numbers
# + {"slideshow": {"slide_type": "-"}}
x, y = 3, 3.0
x, type(x), y, type(y)
# + {"slideshow": {"slide_type": "fragment"}}
# alternate notations for readability
p, q = 10_000, 1.1e4
p, type(p), q, type(q)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Numeric operations
# + {"slideshow": {"slide_type": "-"}}
# increment, similar for most other operators: -=, *=, /=
a = 40
a = a + 1
a += 1
a
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Numeric operations
# -
# division
1 / 2, 4 / 3, 4 / 2
# + {"slideshow": {"slide_type": "fragment"}}
# floor division
1 // 2, 4 // 3, 4 // 2
# + {"slideshow": {"slide_type": "fragment"}}
# modulo/remainder, exponent
4 % 3, 3 ** 3
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Booleans
# + {"slideshow": {"slide_type": "-"}}
eq = p == 10_000
eq, type(eq)
# + {"slideshow": {"slide_type": "fragment"}}
# numbers and strings: 0, empty string, None -> False, everything else -> True
bool(1), bool(0), bool(""), bool("foo"), bool(None)
# + {"slideshow": {"slide_type": "fragment"}}
# containers: empty -> False, has element -> True
bool(list()), bool([1]), bool(set()), bool({1}), bool(dict()), bool({1: 4})
# + {"slideshow": {"slide_type": "subslide"}}
bool(None), bool([]), bool([1])
# -
bool([None]) # given the above, what does this evaluate to?
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Boolean operations
# -
-2 > 3 or -1 < 0, 2 > 3 and -1 > 3, not True
# + {"slideshow": {"slide_type": "notes"}, "cell_type": "markdown"}
# ##### Truth table
#
# <table>
# <tr><th>Logical OR</th><th>Logical AND</th></tr>
# <tr><td>
#
# | `or` | T | F |
# |:----:|---|---|
# | T | T | T |
# | F | T | F |
#
# </td><td>
#
# | `and` | T | F |
# |:-----:|---|---|
# | T | T | F |
# | F | F | F |
#
# </td></tr> </table>
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Strings
# + {"slideshow": {"slide_type": "-"}}
txt = "foo bar baz" # 'also valid'
txt, type(txt)
# + {"slideshow": {"slide_type": "fragment"}}
# escaping, and nested quotes
'Don\'t be an ass', "Don't be an ass"
# + {"slideshow": {"slide_type": "subslide"}}
multi = "First\nSecond"
multi
# + {"slideshow": {"slide_type": "fragment"}}
print(multi)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Triple quoted strings
# -
prose = """This is a pre-formatted string.
You may have paragraphs, and lists:
- an item
- no need for "escaping"
Or whatever you like
"""
print(prose)
prose
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### String operations
# + {"slideshow": {"slide_type": "-"}}
# concatenation
"foo" "bar"
# + {"slideshow": {"slide_type": "fragment"}}
"foo"\
"bar"
# + {"slideshow": {"slide_type": "fragment"}}
# append
a = "foo"
b = "bar"
a + b
# + {"slideshow": {"slide_type": "subslide"}}
# multiply
"--8<-" * 5
# + {"slideshow": {"slide_type": "fragment"}}
# in
"foo" in "foo bar baz", "foo" not in "foo bar baz"
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### User defined types
# + {"slideshow": {"slide_type": "-"}}
class MyClass:
def __init__(self, name):
self.name = name
def __repr__(self):
return f'MyClass("{self.name}")'
instance = MyClass("foo")
instance, type(instance)
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Containers
# + {"slideshow": {"slide_type": "-"}}
l = [1, 2.0, 3, 4.0, "foo", True]
t1 = (1, 3.14, True)
type(l), type(t1)
# + {"slideshow": {"slide_type": "subslide"}}
# append
l + [1, 2]
# + {"slideshow": {"slide_type": "fragment"}}
# multiply
t1 * 3
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Indexing
#
# Syntax: `container[index]`
# + {"slideshow": {"slide_type": "-"}}
l[0] == t1[0] == 1
# + {"slideshow": {"slide_type": "fragment"}}
l[-1] == True
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Slicing
#
# Syntax: `container[start:stop:step]` (only one is required)
# -
l, l[:2], l[1:3]
# + {"slideshow": {"slide_type": "fragment"}}
l[0:4:2], l[::3]
# + {"slideshow": {"slide_type": "fragment"}}
txt = "foo bar baz"
txt[4:7]
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Mutable and immutable types
#
# Certain types, once created cannot be "edited"; e.g. `str`, `tuple`.
# + {"slideshow": {"slide_type": "fragment"}}
l # mutable
# + {"slideshow": {"slide_type": "-"}}
l[0] = 1000
l
# + {"slideshow": {"slide_type": "subslide"}}
t1, txt # immutable
# + {"slideshow": {"slide_type": "fragment"}}
t1[0] = 1000
# + {"slideshow": {"slide_type": "fragment"}}
txt[5] = "e"
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Operators & type conversion
#
# - Implicit type conversion on supported operations
# - Result is the most representative type: support both operands **and** the result
# -
1 + 3.14, type(1 + 3.14), 1 + True, type(1 + True), 2.16 * False
# + {"slideshow": {"slide_type": "subslide"}}
"1" + 1
# -
1 + "1" # same for: "foo" - "foo"
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Flow control
#
# - conditionals
# - iteration
# - callable / functions: reusable routines
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Conditionals
# -
# if .. else ..
txt = "foo bar baz"
if "foo" in txt:
pass
elif "bar" in txt: # optional
pass
else: # optional
pass
# + {"slideshow": {"slide_type": "fragment"}}
# ternary conditional
par = None
5 if par is None else par
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Iteration
#
# #### `for` loops
# -
# iterate over items
t1 = (1, 3.14, True)
for i in t1:
print(i)
# + {"slideshow": {"slide_type": "subslide"}}
# iterate by index
for i in range(len(t1)): # len(..) returns the length of a sequence
print(t1[i])
# + {"slideshow": {"slide_type": "fragment"}}
# iterate by index
for i in range(1, 10, 2):
print(i)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### `while` loops
#
# *What does the following do?*
# -
# flexible iteration
txt = "foo bar baz"
i = 0
res = []
while i < len(txt):
res += [txt[-1 - i]]
i += 1
"".join(res) # calling: str.join(Iterable[str]) -> str
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# **Ans:** *Reverse the string `txt`*
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### `break` and `continue` statements
#
# *What does the following do?*
# + {"slideshow": {"slide_type": "-"}}
txt = "foo bar baz"
i = 0
while i < len(txt):
if txt[i] == "b":
break # prematurely ends any iteration
i += 1
txt[:i]
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# **Ans:** *Finds the first b / Shows the string upto the first b*
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# *What does the following do?*
# -
txt = "foo bar baz"
i = 0
res = ""
while i < len(txt):
char = txt[i]
i += 1
if char == "b":
continue # skip this iteration
res += char
res
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# **Ans:** *Remove all b-s from the string*
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Callables / Functions
#
# - Wraps a code block that can be reused, arguments act as parameters
# - Ends in a `return` statement; returns control back to the caller
# +
def add(i, j):
return i + j
def sub(i, j):
return i - j
def op(i, j, operator=add): # default operator: addition
"""Applies a binary operator to two numbers""" # <- docstring
return operator(i, j)
# + {"slideshow": {"slide_type": "subslide"}}
op(3, 4) # addition
# + {"slideshow": {"slide_type": "fragment"}}
op(3, 4, sub) # subtraction
# + {"slideshow": {"slide_type": "fragment"}}
# multiply w/ anonymous function
op(3, 4, lambda i, j: i * j)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# In the absence of a `return` statement, `return None`
# -
def myfunc():
pass
# + {"slideshow": {"slide_type": "fragment"}}
res = myfunc()
print(res)
# + {"slideshow": {"slide_type": "notes"}, "cell_type": "markdown"}
# #### Anonymous / `lambda` functions
#
# - no statements
# - only expressions
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Positional and keyword arguments
# -
def myfunc(pos1, pos2, kw1="foo", kw2="bar"):
print(pos1, pos2, kw1, kw2)
# + {"slideshow": {"slide_type": "fragment"}}
# what's the print order?
myfunc(1, 2, 3, 4)
# -
myfunc(1, 2, kw2="random", kw1="order")
myfunc(5, kw1="bla", pos2=99, kw2="dibla")
# + {"slideshow": {"slide_type": "subslide"}}
# explain the errors
myfunc()
# -
myfunc(42)
myfunc(kw1=42)
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Variable scope
# -
# Code blocks, at any indentation level, are in the *same scope*
# +
num = 42
for i in range(3):
if i == 0:
assert num == 42
num = 5
assert num == 5
assert num == 5
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# Functions have access to variables in the current scope *during execution*
# +
num = 42
def testfn1():
assert num == 42, f"{num} is not 42"
# + {"slideshow": {"slide_type": "fragment"}}
testfn1()
# + {"slideshow": {"slide_type": "fragment"}}
num = 5
testfn1()
# + {"slideshow": {"slide_type": "subslide"}}
del num
# -
testfn1()
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# When 2 variables have the same name, the variable in the inner most scope is said to *shadow* the outer variable
# +
num = 42
def testfn2():
num = 5
assert num == 5, f"{num} is not 5"
# -
testfn2()
# + {"slideshow": {"slide_type": "subslide"}}
assert num == 5, f"{num} is not 5"
# + {"slideshow": {"slide_type": "notes"}, "cell_type": "markdown"}
# *Review errors at this point*
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# <center><strong>▮▮</strong></center>
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### How to help yourself
#
# - Use `help(object|"syntax token")`
# - docstrings
# - function signatures
# - Library reference, tutorials, HOWTOs, etc @ [Python.org](https://docs.python.org/3.7/)
# -
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Problem 1
#
# - Read a sequence, and count the number of bases of each type.
# - Print out the counts as a table, or write it to a CSV file.
# +
from tutorial.io import read_file, fasta_seqs
# `next` will work only twice, as the file has only two sequences
fasta = read_file("data/example.fa")
seq_itr = fasta_seqs(fasta)
_, seq1 = next(seq_itr) # work with seq1, it's a string
# -
seq1[:12]
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Problem 2
#
# - Read a sequence, and identify the sequence of *Codons*.
# - Print out the position and codon as a table, or write it to a CSV file.
# +
from tutorial.seq import CODON_MAP
_, seq2 = next(seq_itr)
# CODON_MAP["START"], list of starting seq
# CODON_MAP["STOP"], list of all stopping seqs
# CODON_MAP["REST"], list of all other seqs
# -
CODON_MAP["STOP"]
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# <center><strong>▶</strong></center>
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# # ![Python logo](data/python.ico) More Python concepts
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Format strings
# -
fmt_float = "{0} {0:.3f} {0:+.3f} {0: .3f} {0:.3e} {0:.3g}"
# + {"slideshow": {"slide_type": "fragment"}}
fmt_float.format(79 / 3)
# -
fmt_float.format(-79 / 3)
# + {"slideshow": {"slide_type": "subslide"}}
fmt = "{} {} {}"
# -
fmt.format("foo", "bar", "baz")
# + {"slideshow": {"slide_type": "fragment"}}
fmt = "{a} {b} {c}"
# -
fmt.format(a="foo", c="bar", b="baz")
# + {"slideshow": {"slide_type": "subslide"}}
a, b, c = "foo bar baz".split() # calling: str.split() -> List[str]
f"{a} {b} {c} {c.upper()}"
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Function calls
#
# ### Argument unpacking
# -
def myfunc(pos1, pos2, kw1="foo", kw2="bar"):
print(pos1, pos2, kw1, kw2)
x, y, z = (1, 2, 3)
x, y, z
# + {"slideshow": {"slide_type": "subslide"}}
t1 = (1, 2, "foo", "bar")
myfunc(*t1) # also works for lists
# + {"slideshow": {"slide_type": "fragment"}}
d1 = {"kw1": "foo", "kw2": "bar"}
myfunc(*t1[:2], **d1)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Arbitrary arguments
#
# - positional arguments, followed by keyword arguments
# -
def myflexiblefn(pos1, *args, kw1="foo", **kwargs):
print(pos1, kw1, args, kwargs)
myflexiblefn(1, 2, 3, kw1="foo", kw2="bar", kw3="baz")
# argument order: positional, *args, keyword, **kwargs
myflexiblefn(**d1, *t1[:2])
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# **Note:** default arguments should never be mutable objects, e.g. empty containers
# +
def fn1(a, b=42): # a-okay!
pass
def fn1(a, b=[]): # not okay!
pass
def fn1(a, b=None):
# use this idiom instead
if b is None:
b = []
pass
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Containers & Iteration
#
# ### List comprehension
# -
[i for i in range(5)]
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# #### with conditionals
# -
[i for i in range(10) if i % 2]
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Sets
#
# - elements are unique
# -
set("foo bar baz")
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# #### Set comprehension
# -
{c for c in "foo bar baz"}
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Operations with `set`s
# -
a_, b_, c_ = set("foo"), set("bar"), set("baz")
b_.intersection(c_), a_.isdisjoint(b_)
b_.difference(c_), c_.difference(b_)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Dictionaries
# -
week = {
"mon": 9,
"tues": 1,
"wed": 2,
"thurs": 3,
"fri": 4,
"sat": 5,
"sun": 6,
}
week
week["mon"] = 0
week
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Dictionary comprehension
# + {"slideshow": {"slide_type": "-"}}
{k: (v, v < 5) for k, v in week.items()} # add weekday boolean flag
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Merging tuples, lists, and dictionaries
# -
t1 = (1, 2)
t2 = ("foo", "bar", "baz")
(42, *t1, *t2) # same for lists
# + {"slideshow": {"slide_type": "fragment"}}
d0 = {"a": 1, "b": 2}
d1 = {"c": 3, "d": 4}
{**d0, **d1}
# -
# later keys have precedence
{**d0, **d1, "a": 0}
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## I/O
#
# - text file formats (read using parsers):
# - delimited files: `CSV`, `TSV`
# - files with nested data: `JSON`, `XML`, `YAML`
# - genomics: `FASTA` (DNA sequence), `VCF` (variant calls)
# - binary formats (dedicated libraries):
# - advanced compression support (smaller files)
# - faster (optimised for a common task)
# - formats: `HDF5` (hierarchichal), `Parquet` (columnar), `Avro` (row)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# 1. open file: read, write, text, binary
# 2. do operations: read, write, seek
# 3. close file (otherwise may get corrupted)
# 4. Standard library: `csv`, `json`, `xml`, `yaml`, `zip`, `bz2`
# + {"slideshow": {"slide_type": "subslide"}}
txt = open("/tmp/afile.txt", mode="w")
txt.write("foo")
txt.write("bar")
txt.write("baz\n")
txt.write(str(1) + "\n")
txt.close()
# -
# ! cat /tmp/afile.txt
# + {"slideshow": {"slide_type": "subslide"}}
txt = open("/tmp/afile.txt", mode="r") # open
for line in txt.readlines(): # work with it
print(line)
# + {"slideshow": {"slide_type": "fragment"}}
txt.close() # close
# + {"slideshow": {"slide_type": "fragment"}}
# why the extra lines?
# + {"slideshow": {"slide_type": "subslide"}}
# use context managers
with open("/tmp/afile.txt", mode="w") as txt:
txt.write("foo")
txt.write("bar")
txt.write("baz\n")
txt.write(str(42) + "\n")
# -
# ! cat /tmp/afile.txt
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Advanced example from tutorial helpers
# -
from tutorial.io import read_file
# + {"slideshow": {"slide_type": "subslide"}}
read_file??
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# <center><strong>▮▮</strong></center>
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Problem 1, attempt 2
#
# - Read a sequence, and count the number of bases of each type.
# - Print out the counts as a table, or write it to a CSV file.
# -
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Problem 2, attempt 2
#
# - Read a sequence, and identify the sequence of *Codons*.
# - Print out the position and codon as a table, or write it to a CSV file.
# -
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ### Problem 3
#
# - read `data/summary.txt` as a "table", and summarise the data
# - *Note:* you might need to do some cleaning, to interpret the table as numbers
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# <center><strong>▶</strong></center>
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# # ![Python logo](data/python.ico) Advanced Python concepts
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Writing scripts
#
#
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### *shebang* line:
#
# #!/usr/bin/python
# # script continues ...
#
# or more portable:
#
# #!/usr/bin/env python
# # script continues ...
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### `import` statements
#
# **Syntax:** `import module` or `from module import name [, name]`
# -
import sys # module name
from pathlib import Path # function or class name
from functools import chain, accumulate # multiple names
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Argument parsing
# -
sys.argv # all command line arguments (including script name)
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# ### Problem 1, attempt 3
#
# - Read a sequence, and count the number of bases of each type.
# - Print out the counts as a table, or write it to a CSV file.
# - Write the solution as a script that takes a fasta sequence file as argument
# + {"slideshow": {"slide_type": "fragment"}, "cell_type": "markdown"}
# *Tips:* use libraries like,
# - `argparse` (in the standard library, no installation needed),
# - `click` (external library, more concise *decorator* based API).
#
# *Solutions:* see [simple](prob-1-soln-1.py), [more complete](prob-1-soln-2.py).
# -
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Decorators
#
# - Allows you to modify behaviour by "wrapping" an existing function
# - They are functions themselves
# + {}
def make_bold(fn):
def wrapper(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapper
@make_bold
def hello1():
return "Hello World!"
# -
hello1()
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# *How does it work?*
# +
@make_bold
def hello1(name="World"):
return f"Hello {name}!"
def hello2(name="World"):
return f"Hello {name}!"
hello2 = make_bold(hello2) # equivalent
# -
hello2("Foo"), hello3("Bar")
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# Reimplement retaining the function name
# +
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapper
@makebold
def hello2(name="World"):
return f"Hello {name}!"
# -
hello1.__name__, hello2.__name__
# + {"slideshow": {"slide_type": "subslide"}, "cell_type": "markdown"}
# #### Decorators with parameters
# +
def format_tag(tag):
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return f"<{tag}>{fn(*args, **kwargs)}</{tag}>"
return wrapper
return decorator
@format_tag("b")
def hello1(name="World"):
return f"Hello {name}!"
@format_tag("i")
def hello2(name="World"):
return f"Hello {name}!"
# -
hello1("Felix"), hello2("Phoenix")
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Generators
#
# - functions with lazy evaluation
# - `yield` -> `return`
# + {"slideshow": {"slide_type": "fragment"}}
def myrange(start, end, step=1):
"""My range implementation"""
res = start
while res < end:
yield res
res += step
# -
[i for i in myrange(0, 10, 3)]
# + {"slideshow": {"slide_type": "slide"}, "cell_type": "markdown"}
# ## Iterators & generator expressions
#