You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We have categorical features in our observation data. Are we able to modify the CustomEncoderFactory for the custom neural network to include categorical features to build embeddings?
I'm familiar with how to do with a vanilla torch dataset, i.e.
`class ModelDataset(Dataset):
def init(self, df, cat_fields, cont_fields, y):
self.df = df
self.y = y.astype(np.float32)
cat_values = [c.values for n,c in df[cat_fields].items()]
cont_values = [c.values for n,c in df[cont_fields].items()]
self.cat_features = np.stack(cat_values, 1).astype(np.int64)
self.cont_features = np.stack(cont_values, 1).astype(np.float32)
Greetings,
We have categorical features in our observation data. Are we able to modify the CustomEncoderFactory for the custom neural network to include categorical features to build embeddings?
I'm familiar with how to do with a vanilla torch dataset, i.e.
`class ModelDataset(Dataset):
def init(self, df, cat_fields, cont_fields, y):
self.df = df
self.y = y.astype(np.float32)
cat_values = [c.values for n,c in df[cat_fields].items()]
cont_values = [c.values for n,c in df[cont_fields].items()]
self.cat_features = np.stack(cat_values, 1).astype(np.int64)
self.cont_features = np.stack(cont_values, 1).astype(np.float32)
The text was updated successfully, but these errors were encountered: