-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
99 lines (71 loc) · 2.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
from flask import Flask, render_template, request, redirect, url_for
from flask import send_from_directory
from werkzeug.utils import secure_filename
import numpy as np
import tensorflow as tf
import base64
import sql
app = Flask(__name__)
dir_path = os.path.dirname(os.path.realpath(__file__))
UPLOAD_FOLDER = "uploads"
STATIC_FOLDER = "static"
# Load model
cnn_model = tf.keras.models.load_model(STATIC_FOLDER + "/models/" + "dog_cat_TK_2.h5")
IMAGE_SIZE = 192
# Preprocess an image
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [IMAGE_SIZE, IMAGE_SIZE])
image /= 255.0 # normalize to [0,1] range
image = 2*image-1 # normalize to [-1,1] range
return image
# Read the image from path and preprocess
def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)
# Predict & classify image
def classify(model, image_path):
preprocessed_imgage = load_and_preprocess_image(image_path)
preprocessed_imgage = tf.reshape(
preprocessed_imgage, (1, IMAGE_SIZE, IMAGE_SIZE, 3)
)
prob = cnn_model.predict(preprocessed_imgage)
label = "Cat" if prob[0][0] >= 0.5 else "Dog"
classified_prob = prob[0][0] if prob[0][0] >= 0.5 else 1 - prob[0][0]
return label, classified_prob
# home page
@app.route("/")
@app.route("/home")
def home():
return render_template("home.html")
@app.route("/classify", methods=["POST", "GET"])
def upload_file():
if request.method == "GET":
return render_template("home.html")
else:
file = request.files["image"]
upload_image_path = os.path.join(UPLOAD_FOLDER, file.filename)
print(upload_image_path)
file.save(upload_image_path)
label, prob = classify(cnn_model, upload_image_path)
prob = round((prob * 100), 2)
return render_template(
"classify.html", image_file_name=file.filename, label=label, prob=prob
)
@app.route("/classify/<filename>")
def send_file(filename):
return send_from_directory(UPLOAD_FOLDER, filename)
@app.route('/thank_you/<img_name>/<answer>', methods = ['GET', 'POST'])
def thank_you(img_name, answer):
img_path = os.getcwd() + '/uploads/' + img_name
sql.save_into_db(img_path, answer)
# os.remove(img_path)
return redirect(url_for('home'))
@app.route('/model')
def model():
return render_template('model.html')
if __name__ == '__main__':
app.debug = True
app.run(debug=True)
app.debug = True