|
1 | 1 | module ChapterExercises where
|
2 | 2 |
|
3 |
| --- 1. |
| 3 | +import Data.Monoid |
| 4 | +import Control.Applicative |
| 5 | +import Test.QuickCheck |
| 6 | +import Test.QuickCheck.Checkers |
| 7 | +import Test.QuickCheck.Classes |
4 | 8 |
|
5 |
| -pure :: a -> [a] |
6 |
| -(<*>) :: [(a -> b)] -> [a] -> [b] |
| 9 | +{- |
| 10 | + - 1. |
| 11 | + - |
| 12 | + -pure :: a -> [a] |
| 13 | + -(<*>) :: [(a -> b)] -> [a] -> [b] |
| 14 | + - |
| 15 | + - 2. |
| 16 | + - |
| 17 | + -pure :: a -> IO a |
| 18 | + -(<*>) :: IO (a -> b) -> IO a -> IO b |
| 19 | + - |
| 20 | + - 3. |
| 21 | + - |
| 22 | + -pure :: Monoid a => b -> (a, b) |
| 23 | + -(<*>) :: Monoid c => (c, a -> b) -> (c, a) -> (c, b) |
| 24 | + - |
| 25 | + - 4. |
| 26 | + - |
| 27 | + -pure :: a -> (->) e a == a -> (e -> a) == a -> e -> a |
| 28 | + -(<*>) :: ((->) e (a -> b)) -> ((->) e a) -> ((->) e b) |
| 29 | + -(<*>) :: (e -> (a -> b)) -> (e -> a) -> (e -> b) |
| 30 | + -f (<*>) g = \x -> f x $ g x |
| 31 | + -} |
7 | 32 |
|
8 |
| --- 2. |
9 | 33 |
|
10 |
| -pure :: a -> IO a |
11 |
| -(<*>) :: IO (a -> b) -> IO a -> IO b |
| 34 | +main = do |
| 35 | + quickBatch $ functor $ (Pair (1, 2, 3) (1, 2, 3) :: Pair (Int, Int, Int)) |
| 36 | + quickBatch $ applicative $ (Pair (1, 2, 3) (1, 2, 3) :: Pair (Int, Int, Int)) |
12 | 37 |
|
13 |
| --- 3. |
| 38 | + quickBatch $ functor $ (Two "a" (1, 2, 3) :: Two String (Int, Int, Int)) |
| 39 | + quickBatch $ applicative $ (Two "a" (1, 2, 3) :: Two String (Int, Int, Int)) |
14 | 40 |
|
15 |
| -pure :: Monoid a => b -> (a, b) |
16 |
| -(<*>) :: Monoid c => (c, a -> b) -> (c, a) -> (c, b) |
| 41 | + quickBatch $ functor $ (Three "a" 1 (1, 2, 3) :: Three String (Sum Int) (Int, Int, Int)) |
| 42 | + quickBatch $ applicative $ (Three "a" 2 (1, 2, 3) :: Three String (Sum Int) (Int, Int, Int)) |
17 | 43 |
|
18 |
| --- 4. |
| 44 | + quickBatch $ functor $ (Three' "a" (1, 2, 3) (1, 2, 3) :: Three' String (Int, Int, Int)) |
| 45 | + quickBatch $ applicative $ (Three' "a" (1, 2, 3) (1, 2, 3) :: Three' String (Int, Int, Int)) |
19 | 46 |
|
20 |
| -pure :: a -> (->) e a |
| 47 | + quickBatch $ functor $ (Four "a" "a" 1 (1, 2, 3) :: Four String String (Sum Int) (Int, Int, Int)) |
| 48 | + quickBatch $ applicative $ (Four "a" "a" 2 (1, 2, 3) :: Four String String (Sum Int) (Int, Int, Int)) |
| 49 | + |
| 50 | + quickBatch $ functor $ (Four' "a" "a" (1, 2, 3) (1, 2, 3) :: Four' String (Int, Int, Int)) |
| 51 | + quickBatch $ applicative $ (Four' "a" "a"(1, 2, 3) (1, 2, 3) :: Four' String (Int, Int, Int)) |
| 52 | + |
| 53 | +instance Arbitrary a => Arbitrary (Sum a) where |
| 54 | + arbitrary = fmap Sum arbitrary |
| 55 | + |
| 56 | +data Pair a = Pair a a deriving (Eq, Show) |
| 57 | + |
| 58 | +instance Arbitrary a => Arbitrary (Pair a) where |
| 59 | + arbitrary = liftA2 Pair arbitrary arbitrary |
| 60 | + |
| 61 | +instance Eq a => EqProp (Pair a) where |
| 62 | + (=-=) = eq |
| 63 | + |
| 64 | +instance Functor Pair where |
| 65 | + fmap f (Pair a b) = Pair (f a) (f b) |
| 66 | + |
| 67 | +instance Applicative Pair where |
| 68 | + pure x = Pair x x |
| 69 | + Pair f g <*> Pair x y = Pair (f x) (g y) |
| 70 | + |
| 71 | +data Two a b = Two a b deriving (Eq, Show) |
| 72 | + |
| 73 | +instance Functor (Two a) where |
| 74 | + fmap f (Two x y) = Two x $ f y |
| 75 | + |
| 76 | +instance (Eq a, Eq b) => EqProp (Two a b) where |
| 77 | + (=-=) = eq |
| 78 | + |
| 79 | +instance (Arbitrary a, Arbitrary b) => Arbitrary (Two a b) where |
| 80 | + arbitrary = liftA2 Two arbitrary arbitrary |
| 81 | + |
| 82 | +instance Monoid a => Applicative (Two a) where |
| 83 | + pure = Two mempty |
| 84 | + Two a f <*> Two a' x = Two (a `mappend` a') $ f x |
| 85 | + |
| 86 | +data Three a b c = Three a b c deriving (Eq, Show) |
| 87 | + |
| 88 | +instance Functor (Three a b) where |
| 89 | + fmap f (Three a b x) = Three a b $ f x |
| 90 | + |
| 91 | +instance (Eq a, Eq b, Eq c) => EqProp (Three a b c) where |
| 92 | + (=-=) = eq |
| 93 | + |
| 94 | +instance (Arbitrary a, Arbitrary b, Arbitrary c) => Arbitrary (Three a b c) where |
| 95 | + arbitrary = liftA3 Three arbitrary arbitrary arbitrary |
| 96 | + |
| 97 | +instance (Monoid a, Monoid b) => Applicative (Three a b) where |
| 98 | + pure = Three mempty mempty |
| 99 | + Three a b f <*> Three a' b' x = Three (a `mappend` a') (b `mappend` b') $ f x |
| 100 | + |
| 101 | +data Three' a b = Three' a b b deriving (Eq, Show) |
| 102 | + |
| 103 | +instance Functor (Three' a) where |
| 104 | + fmap f (Three' a x x') = Three' a (f x) (f x') |
| 105 | + |
| 106 | +instance (Eq a, Eq b) => EqProp (Three' a b) where |
| 107 | + (=-=) = eq |
| 108 | + |
| 109 | +instance (Arbitrary a, Arbitrary b) => Arbitrary (Three' a b) where |
| 110 | + arbitrary = liftA3 Three' arbitrary arbitrary arbitrary |
| 111 | + |
| 112 | +instance (Monoid a) => Applicative (Three' a) where |
| 113 | + pure x = Three' mempty x x |
| 114 | + Three' a f g <*> Three' a' x y = Three' (a `mappend` a') (f x) (g y) |
| 115 | + |
| 116 | +data Four a b c d = Four a b c d deriving (Eq, Show) |
| 117 | + |
| 118 | +instance Functor (Four a b c) where |
| 119 | + fmap f (Four a b c x) = Four a b c $ f x |
| 120 | + |
| 121 | +instance (Eq a, Eq b, Eq c, Eq d) => EqProp (Four a b c d) where |
| 122 | + (=-=) = eq |
| 123 | + |
| 124 | +instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d) => Arbitrary (Four a b c d) where |
| 125 | + arbitrary = Four <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary |
| 126 | + |
| 127 | +instance (Monoid a, Monoid b, Monoid c) => Applicative (Four a b c) where |
| 128 | + pure = Four mempty mempty mempty |
| 129 | + Four a b c f <*> Four a' b' c' x = Four (a `mappend` a') (b `mappend` b') (c `mappend` c') $ f x |
| 130 | + |
| 131 | +data Four' a b = Four' a a b b deriving (Eq, Show) |
| 132 | + |
| 133 | +instance Functor (Four' a) where |
| 134 | + fmap f (Four' a a' x x') = Four' a a' (f x) (f x') |
| 135 | + |
| 136 | +instance (Eq a, Eq b) => EqProp (Four' a b) where |
| 137 | + (=-=) = eq |
| 138 | + |
| 139 | +instance (Arbitrary a, Arbitrary b) => Arbitrary (Four' a b) where |
| 140 | + arbitrary = Four' <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary |
| 141 | + |
| 142 | +instance (Monoid a) => Applicative (Four' a) where |
| 143 | + pure x = Four' mempty mempty x x |
| 144 | + Four' a b f g <*> Four' a' b' x y = Four' (a `mappend` a') (b `mappend` b') (f x) (g y) |
0 commit comments