-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdownstream.py
230 lines (186 loc) · 9.51 KB
/
downstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import pdb
import os
import argparse
from tabulate import tabulate
from Levenshtein import distance as lev_dist
from utils_downstream import *
from baselines import *
from knowledge_neuron import *
from hardconcrete import hard_concrete
from slim import slim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(0)
@torch.no_grad()
def get_memo_scores(model, tokenizer, examples, prompt_len, n_batches):
all_acc, all_out_texts = [], []
for batch_ex in examples.chunk(n_batches):
inputs = prep_examples(batch_ex, prompt_len)
inputs.to(device)
logits = model(**inputs).logits # [bs, seq_len, vocab]
labels = inputs['input_ids']
preds = logits[:, prompt_len-1:-1].argmax(-1)
acc = (labels[:, prompt_len: ] == preds).cpu().numpy().mean(1)
prompt_texts = tokenizer.batch_decode(labels[:, :prompt_len])
output_texts = tokenizer.batch_decode(preds, skip_special_tokens=True)
output_texts = [p_txt + o_txt for p_txt, o_txt in zip(prompt_texts, output_texts)]
all_acc.append(acc)
all_out_texts.extend(output_texts)
return np.concatenate(all_acc), all_out_texts
def levenshtein_distance(tokenizer, output_texts, examples):
distances = np.zeros(len(output_texts), dtype=int)
for i, (out_str, ex) in enumerate(zip(output_texts, examples)):
tgt_str = tokenizer.decode(ex)
distances[i] = lev_dist(out_str, tgt_str)
return distances
@torch.no_grad()
def test(model, model_name, tokenizer, pos_examples, neg_examples, prompt_len, n_batches):
rand_ppl = get_random_ppl(model, model_name)
acc_pos, texts_pos = get_memo_scores(model, tokenizer, pos_examples, prompt_len, n_batches)
acc_neg, texts_neg = get_memo_scores(model, tokenizer, neg_examples, prompt_len, n_batches)
dist_pos = levenshtein_distance(tokenizer, texts_pos, pos_examples)
dist_neg = levenshtein_distance(tokenizer, texts_neg, neg_examples)
results_pos = pack_results(acc_pos, texts_pos, dist_pos)
results_neg = pack_results(acc_neg, texts_neg, dist_neg)
return results_pos, results_neg, rand_ppl
@torch.no_grad()
def test_all(args, data, model, tokenizer, attributions, ex_i, acc_before, dist_before, ppl_before):
delta_results = {}
for r in RATIOS:
# zero-out memorization neuron with different ratios
apply_neuron_mask(args, model, attributions, r)
pos_examples, neg_examples = get_examples(data, ex_i)
results_pos, results_neg, ppl = \
test(model, args.model_name, tokenizer, pos_examples, neg_examples, args.prompt_len, args.n_batches)
delta_results[r] = {
'ppl': ppl - ppl_before,
'self-acc': results_pos['acc'][0] - acc_before[ex_i],
'self-dist': results_pos['levenshtein_distances'][0] - dist_before[ex_i],
'neg-acc': results_neg['acc'] - np.concatenate((acc_before[:ex_i], acc_before[ex_i+1:])),
'neg-dist': results_neg['levenshtein_distances'] - np.concatenate((dist_before[:ex_i], dist_before[ex_i+1:]))
}
# exclude dev examples, only avg over test examples
if args.debug:
assert len(delta_results[r]['neg-acc'][args.n_dev:]) == 499
assert len(delta_results[r]['neg-dist'][args.n_dev:]) == 499
delta_results[r]['neg-acc-avg'] = delta_results[r]['neg-acc'][args.n_dev:].mean()
delta_results[r]['neg-dist-avg'] = delta_results[r]['neg-dist'][args.n_dev:].mean()
if args.verbose:
print("="*120)
print("\n[After Zero-Out]")
print("[Forgetting is Good]")
print(results_pos)
print("="*120)
print("[Forgetting is Bad]")
print(results_neg)
return delta_results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--do_test", action="store_true")
parser.add_argument("--do_discover", action="store_true")
parser.add_argument("--disk_dir", type=str, default="YOUR_DISK")
parser.add_argument("--model_name", type=str, default='gpt2')
parser.add_argument("--epoch", type=int, default=5000)
parser.add_argument("--start_mask_layer", type=int, default=1)
parser.add_argument("--n_batches", type=int, default=16)
parser.add_argument("--prompt_len", type=int, default=32)
parser.add_argument("--ig_steps", type=int, default=20, help="KN, integrated gradients steps")
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--lambda_l1", type=float, default=1000)
parser.add_argument("--threshold", type=float, default=1e-1)
parser.add_argument("--stop_loss", type=float, default=1e-1)
parser.add_argument("--mask_p", type=float, default=0.5, help="HC")
parser.add_argument("--beta", type=float, default=2/3, help="HC temperature")
parser.add_argument("--save_ckpt", action="store_true")
parser.add_argument("--discover_method", type=str)
parser.add_argument('--ex_list', type=int, nargs='+')
parser.add_argument('--n_dev', type=int, default=5)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
args.device = device
print(args)
data = load_pile_data(args.model_name)
tokenizer, model = load_pretrained(args)
args.inner_dim = model.inner_dim
if args.ex_list is None:
args.ex_list = list(range(args.n_dev, len(data)))
# test pretrained model
out_base_dir = os.path.join(args.disk_dir, f'out_{args.model_name}', 'pile')
if args.do_test:
if os.path.exists(os.path.join(out_base_dir, 'acc_before_zero.npy')):
acc_before = np.load(os.path.join(out_base_dir, 'acc_before_zero.npy'))
dist_before = np.load(os.path.join(out_base_dir, 'levenshtein_before_zero.npy'))
ppl_before = np.load(os.path.join(out_base_dir, 'perplexity_before_zero.npy'))
else:
acc_before, texts_before = get_memo_scores(model, tokenizer, data, args.prompt_len, args.n_batches)
dist_before = levenshtein_distance(tokenizer, texts_before, data)
ppl_before = get_random_ppl(model, args.model_name)
os.makedirs(out_base_dir, exist_ok=True)
np.save(os.path.join(out_base_dir, 'acc_before_zero.npy'), acc_before)
np.save(os.path.join(out_base_dir, 'levenshtein_before_zero.npy'), dist_before)
np.save(os.path.join(out_base_dir, 'perplexity_before_zero.npy'), ppl_before)
print(f'[Before] acc: {acc_before.mean():.3f}, lev_dist: {dist_before.mean():.3f}, rand_ppl: {ppl_before:.2f}')
if args.debug:
print(f'[Before-Dev] acc: {acc_before[:args.n_dev].mean():.3f}, lev_dist: {dist_before[:args.n_dev].mean():.3f}')
# find memorization neurons
all_delta_results = []
patched = False
for ex_i in tqdm(args.ex_list):
args.out_dir = os.path.join(out_base_dir, str(ex_i))
os.makedirs(args.out_dir, exist_ok=True)
inputs = prep_examples(data[ex_i].view(1, -1), args.prompt_len)
print_input(tokenizer, inputs)
inputs.to(device)
if args.discover_method == 'HC' and args.do_discover: # patch HardConcrete
if not patched:
patch_hardconcrete(model, args.model_name, mask_p=args.mask_p, beta=args.beta)
patched = True
model.to(device)
else:
reinit_hardconcrete(model)
else: # do_test; all methods
if not patched:
patch_slim(model)
patched = True
model.to(device)
else:
reinit_slim(model)
# discover memorization neurons
if args.do_discover:
if args.discover_method == 'HC':
set_mask_mode(model, is_train=True)
attributions = hard_concrete(args, model, tokenizer, inputs, None)
elif args.discover_method == 'slim':
attributions = slim(args, model, tokenizer, inputs, None)
elif args.discover_method == 'zero':
attributions = fast_zero_out_vector(args, model, tokenizer, inputs, None)
elif args.discover_method == 'kn':
attributions = integrated_gradients(args, model, tokenizer, inputs, None)
elif args.discover_method == 'act':
attributions = largest_act(args, model, tokenizer, inputs, None)
# dorpout and test
elif args.do_test:
if args.discover_method == 'random':
attributions = torch.rand(model.config.n_layer, model.inner_dim)
else:
attributions = load_cached_attributions(args)
delta_results = test_all(args, data, model, tokenizer, attributions, ex_i, acc_before, dist_before, ppl_before)
all_delta_results.append(delta_results)
# checkpoint
if args.debug:
print(ex_i)
print_table([delta_results])
print('-'*100)
if len(all_delta_results) % 100 == 0:
fn = f'{args.discover_method}-delta_results-ckpt-{len(all_delta_results)}.pkl'
with open(os.path.join(out_base_dir, fn), 'wb') as f:
pickle.dump(all_delta_results, f)
if args.do_test:
fn = f'{args.discover_method}-delta_results.pkl'
with open(os.path.join(out_base_dir, fn), 'wb') as f:
pickle.dump(all_delta_results, f)
print_table(all_delta_results)