-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
458 lines (376 loc) · 18.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import world
import torch
from dataloader import BasicDataset
import dataloader
from dataloader import load_data
from torch import nn
from GAT import GAT
import numpy as np
from utils import _L2_loss_mean
import torch.nn.functional as F
import time
import torch.nn.functional as F
from torch_scatter import scatter_mean, scatter_softmax, scatter_sum
import os
import world
import torch
from dataloader import BasicDataset
import dataloader
from dataloader import load_data
from torch import nn
from GAT import GAT
import numpy as np
from utils import _L2_loss_mean
import torch.nn.functional as F
import time
import torch.nn.functional as F
from torch_scatter import scatter_mean, scatter_softmax, scatter_sum
class BasicModel(nn.Module):
def __init__(self):
super(BasicModel, self).__init__()
def getUsersRating(self, users):
raise NotImplementedError
class Aggregator(nn.Module):
def __init__(self, n_usersX):
super(Aggregator, self).__init__()
self.n_usersX = n_usersX
def forward(self, entity_emb, user_emb,
edge_index, edge_type, interact_mat,
weight):
from torch_scatter import scatter_mean, scatter_softmax, scatter_sum
n_entities = entity_emb.shape[0]
head, tail = edge_index
edge_relation_emb = weight[edge_type - 1]
neigh_relation_emb = entity_emb[tail] * edge_relation_emb
neigh_relation_emb_weight = self.calculate_sim_hrt(entity_emb[head], entity_emb[tail], weight[edge_type - 1])
neigh_relation_emb_weight = neigh_relation_emb_weight.expand(neigh_relation_emb.shape[0],
neigh_relation_emb.shape[1])
neigh_relation_emb_weight = scatter_softmax(neigh_relation_emb_weight, index=head, dim=0)
neigh_relation_emb = torch.mul(neigh_relation_emb_weight, neigh_relation_emb)
entity_agg = scatter_sum(src=neigh_relation_emb, index=head, dim_size=n_entities, dim=0)
user_agg = torch.sparse.mm(interact_mat, entity_emb)
score = torch.mm(user_emb, weight.t())
score = torch.softmax(score, dim=-1)
user_agg = user_agg + (torch.mm(score, weight)) * user_agg
return entity_agg, user_agg
def calculate_sim_hrt(self, entity_emb_head, entity_emb_tail, relation_emb):
tail_relation_emb = entity_emb_tail * relation_emb
tail_relation_emb = tail_relation_emb.norm(dim=1, p=2, keepdim=True)
head_relation_emb = entity_emb_head * relation_emb
head_relation_emb = head_relation_emb.norm(dim=1, p=2, keepdim=True)
att_weights = torch.matmul(head_relation_emb.unsqueeze(dim=1), tail_relation_emb.unsqueeze(dim=2)).squeeze(dim=-1)
att_weights = att_weights ** 2
return att_weights
class GraphConv(nn.Module):
def __init__(self, channel, n_hops, n_usersX,
n_relationsX, interact_mat,
ind, node_dropout_rate=0.0, mess_dropout_rate=0.0):
super(GraphConv, self).__init__()
self.convs = nn.ModuleList()
self.interact_mat = interact_mat
self.n_relationsX = n_relationsX
self.n_usersX = n_usersX
self.node_dropout_rate = node_dropout_rate
self.mess_dropout_rate = mess_dropout_rate
self.ind = ind
self.topk = 10
self.lambda_coeff = 0.5
self.temperature = 0.2
initializer = nn.init.xavier_uniform_
weight = initializer(torch.empty(n_relationsX - 1, channel))
self.weight = nn.Parameter(weight)
self.device = torch.device("cuda:" + str(0))
for i in range(n_hops):
self.convs.append(Aggregator(n_usersX=n_usersX))
self.dropout = nn.Dropout(p=mess_dropout_rate)
def _edge_sampling(self, edge_index, edge_type, rate=0.0):
n_edges = edge_index.shape[1]
random_indices = np.random.choice(n_edges, size=int(n_edges * rate), replace=False)
return edge_index[:, random_indices], edge_type[random_indices]
def _sparse_dropout(self, x, rate=0.0):
noise_shape = x._nnz()
random_tensor = rate
random_tensor += torch.rand(noise_shape).to(x.device)
dropout_mask = torch.floor(random_tensor).type(torch.bool)
i = x._indices()
v = x._values()
i = i[:, dropout_mask]
v = v[dropout_mask]
out = torch.sparse.FloatTensor(i, v, x.shape).to(x.device)
return out * (1. / (1 - rate))
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo()
i = torch.LongTensor([coo.row, coo.col])
v = torch.from_numpy(coo.data).float()
return torch.sparse.FloatTensor(i, v, coo.shape)
def forward(self, user_emb, entity_emb, edge_index, edge_type,
interact_mat, mess_dropout=True, node_dropout=False):
if node_dropout:
edge_index, edge_type = self._edge_sampling(edge_index, edge_type, self.node_dropout_rate)
interact_mat = self._sparse_dropout(interact_mat, self.node_dropout_rate)
entity_res_emb = entity_emb
user_res_emb = user_emb
for i in range(len(self.convs)):
entity_emb, user_emb = self.convs[i](entity_emb, user_emb,
edge_index, edge_type, interact_mat,
self.weight)
if mess_dropout:
entity_emb = self.dropout(entity_emb)
user_emb = self.dropout(user_emb)
entity_emb = F.normalize(entity_emb)
user_emb = F.normalize(user_emb)
entity_res_emb = torch.add(entity_res_emb, entity_emb)
user_res_emb = torch.add(user_res_emb, user_emb)
return entity_res_emb, user_res_emb
class KGCCL(BasicModel):
def __init__(self,
config:dict,
dataset:BasicDataset,
kg_dataset, data_config, args_config, graphX, relation_dict, adj_mat):
super(KGCCL, self).__init__()
self.config = config
self.dataset : BasicDataset = dataset
self.kg_dataset = kg_dataset
self.__init_weight()
self.gat = GAT(self.latent_dim, self.latent_dim, dropout=0.4, alpha=0.2).train()
self.eps = 0.1
self.layer_cl = 2
self.n_usersX = data_config['n_usersX']
self.n_itemsX = data_config['n_itemsX']
self.n_relationsX = data_config['n_relationsX']
self.n_entitiesX = data_config['n_entitiesX']
self.n_nodesX = data_config['n_nodesX']
self.emb_size = args_config.dim
self.adj_mat = adj_mat
self.graphX = graphX
self.relation_dict = relation_dict
initializer = nn.init.xavier_uniform_
self.all_embed = initializer(torch.empty(self.n_nodesX, self.emb_size))
self.interact_mat = self._convert_sp_mat_to_sp_tensor(self.adj_mat)
self.all_embed = nn.Parameter(self.all_embed)
self.itemuie_emb = None
self.context_hops = args_config.context_hops
self.node_dropout = args_config.node_dropout
self.node_dropout_rate = args_config.node_dropout_rate
self.mess_dropout = args_config.mess_dropout
self.mess_dropout_rate = args_config.mess_dropout_rate
self.ind = args_config.ind
self.device = torch.device("cuda:" + str(args_config.gpu_id)) if args_config.cuda \
else torch.device("cpu")
self.edge_index, self.edge_type = self._get_edges(graphX)
self.__init_weight()
self._init_weightX()
self.gcnX = self._init_model()
self.itemuie_emb = None
self.lightgcnX_layer = 2
self.n_item_layer = 1
def _init_weightX(self):
initializer = nn.init.xavier_uniform_
self.all_embed = torch.nn.Parameter(initializer(torch.empty(self.n_nodesX, self.emb_size)))
self.interact_mat = self._convert_sp_mat_to_sp_tensor(self.adj_mat).to(world.device)
def _init_model(self):
return GraphConv(channel=self.emb_size,
n_hops=self.context_hops,
n_usersX=self.n_usersX,
n_relationsX=self.n_relationsX,
interact_mat=self.interact_mat,
ind=self.ind,
node_dropout_rate=self.node_dropout_rate,
mess_dropout_rate=self.mess_dropout_rate)
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo()
i = torch.LongTensor([coo.row, coo.col])
v = torch.from_numpy(coo.data).float()
return torch.sparse.FloatTensor(i, v, coo.shape)
def _get_indices(self, X):
coo = X.tocoo()
return torch.LongTensor([coo.row, coo.col]).t()
def _get_edges(self, graphX):
graphX_tensor = torch.tensor(list(graphX.edges))
index = graphX_tensor[:, :-1]
type = graphX_tensor[:, -1]
return index.t().long().to(world.device), type.long().to(world.device)
def __init_weight(self):
self.num_users = self.dataset.n_users
self.num_items = self.dataset.m_items
self.num_entities = self.kg_dataset.entity_count
self.num_relations = self.kg_dataset.relation_count
print("user:{}, item:{}, entity:{}".format(self.num_users, self.num_items, self.num_entities))
self.latent_dim = self.config['latent_dim_rec']
self.n_layers = self.config['lightGCN_n_layers']
self.keep_prob = self.config['keep_prob']
self.A_split = self.config['A_split']
self.embedding_user = torch.nn.Embedding(
num_embeddings=self.num_users, embedding_dim=self.latent_dim)
self.embedding_item = torch.nn.Embedding(
num_embeddings=self.num_items, embedding_dim=self.latent_dim)
self.embedding_entity = torch.nn.Embedding(
num_embeddings=self.num_entities+1, embedding_dim=self.latent_dim)
self.embedding_relation = torch.nn.Embedding(
num_embeddings=self.num_relations+1, embedding_dim=self.latent_dim)
self.W_R = nn.Parameter(torch.Tensor(self.num_relations, self.latent_dim, self.latent_dim))
nn.init.xavier_uniform_(self.W_R, gain=nn.init.calculate_gain('relu'))
if self.config['pretrain'] == 0:
world.cprint('use NORMAL distribution UI')
nn.init.normal_(self.embedding_user.weight, std=0.1)
nn.init.normal_(self.embedding_item.weight, std=0.1)
world.cprint('use NORMAL distribution ENTITY')
nn.init.normal_(self.embedding_entity.weight, std=0.1)
nn.init.normal_(self.embedding_relation.weight, std=0.1)
else:
self.embedding_user.weight.data.copy_(torch.from_numpy(self.config['user_emb']))
self.embedding_item.weight.data.copy_(torch.from_numpy(self.config['item_emb']))
self.f = nn.Sigmoid()
self.Graph = self.dataset.getSparseGraph()
self.kg_dict, self.item2relations = self.kg_dataset.get_kg_dict(self.num_items)
def __dropout_x(self, x, keep_prob):
size = x.size()
index = x.indices().t()
values = x.values()
random_index = torch.rand(len(values)) + keep_prob
random_index = random_index.int().bool()
index = index[random_index]
values = values[random_index]/keep_prob
g = torch.sparse.FloatTensor(index.t(), values, size)
return g
def __dropout(self, keep_prob):
if self.A_split:
graph = []
for g in self.Graph:
graph.append(self.__dropout_x(g, keep_prob))
else:
graph = self.__dropout_x(self.Graph, keep_prob)
return graph
def _convert_sp_mat_to_sp_tensor(self, adj_mat):
coo = adj_mat.tocoo()
i = torch.LongTensor([coo.row, coo.col])
v = torch.from_numpy(coo.data).float()
return torch.sparse.FloatTensor(i, v, coo.shape)
def uie_embedding(self,kg_dict):
user_emb = self.all_embed[:self.n_usersX, :]
item_emb = self.all_embed[self.n_usersX:, :]
entity_gcn_emb, user_gcn_emb = self.gcnX(user_emb,
item_emb,
self.edge_index,
self.edge_type,
self.interact_mat,
mess_dropout=self.mess_dropout,
node_dropout=self.node_dropout)
item_indices = list(kg_dict.keys())
useruie_emb = user_gcn_emb
itemuie_emb = entity_gcn_emb[item_indices]
return useruie_emb, itemuie_emb
def view_computer(self, g_droped, kg_droped):
useruie_emb, itemuie_emb = self.uie_embedding(kg_droped)
users_emb = self.embedding_user.weight
items_emb = itemuie_emb
ego_embeddings = torch.cat([users_emb, items_emb])
all_embeddings = []
all_embeddings_cl = ego_embeddings
for k in range(self.n_layers):
ego_embeddings = torch.sparse.mm(g_droped, ego_embeddings)
random_noise = torch.rand_like(ego_embeddings).cuda()
ego_embeddings += torch.sign(ego_embeddings) * F.normalize(random_noise, dim=-1) * self.eps
all_embeddings.append(ego_embeddings)
if k==self.layer_cl-1:
all_embeddings_cl = ego_embeddings
final_embeddings = torch.stack(all_embeddings, dim=1)
final_embeddings = torch.mean(final_embeddings, dim=1)
users, items = torch.split(final_embeddings, [self.num_users, self.num_items])
users_cl, items_cl = torch.split(all_embeddings_cl, [self.num_users, self.num_items])
return users, items, users_cl, items_cl
def computer(self):
useruie_emb, itemuie_emb = self.uie_embedding(self.kg_dict)
users_emb = self.embedding_user.weight
items_emb = itemuie_emb
all_emb = torch.cat([users_emb, items_emb])
embs = [all_emb]
if self.config['dropout']:
if self.training:
g_droped = self.__dropout(self.keep_prob)
else:
g_droped = self.Graph
else:
g_droped = self.Graph
for layer in range(self.n_layers):
all_emb = torch.sparse.mm(g_droped, all_emb)
embs.append(all_emb)
embs = torch.stack(embs, dim=1)
light_out = torch.mean(embs, dim=1)
users, items = torch.split(light_out, [self.num_users, self.num_items])
return users, items
def getUsersRating(self, users):
all_users, all_items = self.computer()
users_emb = all_users[users.long()]
items_emb = all_items
rating = self.f(torch.matmul(users_emb, items_emb.t()))
return rating
def getEmbedding(self, users, pos_items, neg_items):
all_users, all_items = self.computer()
users_emb = all_users[users]
pos_emb = all_items[pos_items]
neg_emb = all_items[neg_items]
users_emb_ego = self.embedding_user(users)
pos_emb_ego = self.embedding_item(pos_items)
neg_emb_ego = self.embedding_item(neg_items)
return users_emb, pos_emb, neg_emb, users_emb_ego, pos_emb_ego, neg_emb_ego
def bpr_loss(self, users, pos, neg):
(users_emb, pos_emb, neg_emb,
userEmb0, posEmb0, negEmb0) = self.getEmbedding(users.long(), pos.long(), neg.long())
reg_loss = (1/2)*(userEmb0.norm(2).pow(2) +
posEmb0.norm(2).pow(2) +
negEmb0.norm(2).pow(2))/float(len(users))
pos_scores = torch.mul(users_emb, pos_emb)
pos_scores = torch.sum(pos_scores, dim=1)
neg_scores = torch.mul(users_emb, neg_emb)
neg_scores = torch.sum(neg_scores, dim=1)
loss = torch.sum(torch.nn.functional.softplus(-(pos_scores - neg_scores)))
if(torch.isnan(loss).any().tolist()):
print("user emb")
print(userEmb0)
print("pos_emb")
print(posEmb0)
print("neg_emb")
print(negEmb0)
print("neg_scores")
print(neg_scores)
print("pos_scores")
print(pos_scores)
return None
return loss, reg_loss
def calc_kg_loss_transE(self, h, r, pos_t, neg_t):
r_embed = self.embedding_relation(r)
h_embed = self.embedding_item(h)
pos_t_embed = self.embedding_entity(pos_t)
neg_t_embed = self.embedding_entity(neg_t)
pos_score = torch.sum(torch.pow(h_embed + r_embed - pos_t_embed, 2), dim=1)
neg_score = torch.sum(torch.pow(h_embed + r_embed - neg_t_embed, 2), dim=1)
kg_loss = (-1.0) * F.logsigmoid(neg_score - pos_score)
kg_loss = torch.mean(kg_loss)
l2_loss = _L2_loss_mean(h_embed) + _L2_loss_mean(r_embed) + _L2_loss_mean(pos_t_embed) + _L2_loss_mean(neg_t_embed)
loss = kg_loss + 1e-3 * l2_loss
return loss
def calc_kg_loss(self, h, r, pos_t, neg_t):
r_embed = self.embedding_relation(r)
W_r = self.W_R[r]
h_embed = self.embedding_item(h)
pos_t_embed = self.embedding_entity(pos_t)
neg_t_embed = self.embedding_entity(neg_t)
r_mul_h = torch.bmm(h_embed.unsqueeze(1), W_r).squeeze(1)
r_mul_pos_t = torch.bmm(pos_t_embed.unsqueeze(1), W_r).squeeze(1)
r_mul_neg_t = torch.bmm(neg_t_embed.unsqueeze(1), W_r).squeeze(1)
pos_score = torch.sum(torch.pow(r_mul_h + r_embed - r_mul_pos_t, 2), dim=1)
neg_score = torch.sum(torch.pow(r_mul_h + r_embed - r_mul_neg_t, 2), dim=1)
kg_loss = (-1.0) * F.logsigmoid(neg_score - pos_score)
kg_loss = torch.mean(kg_loss)
l2_loss = _L2_loss_mean(r_mul_h) + _L2_loss_mean(r_embed) + _L2_loss_mean(r_mul_pos_t) + _L2_loss_mean(r_mul_neg_t)
loss = kg_loss + 1e-3 * l2_loss
return loss
def forward(self, users, items):
all_users, all_items = self.computer()
users_emb = all_users[users]
items_emb = all_items[items]
inner_pro = torch.mul(users_emb, items_emb)
gamma = torch.sum(inner_pro, dim=1)
return gamma