forked from coppolachan/rbm_ising
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresummation.py
174 lines (127 loc) · 3.66 KB
/
resummation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import sys
import argparse
import torch
import torch.utils.data
# import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from torchvision.utils import make_grid, save_image
from math import exp, sqrt, tanh, log
import json
from pprint import pprint
import rbm_pytorch
import pandas as pd
from rbm_pytorch import log_sum_exp
from rbm_pytorch import log_diff_exp
model_size = 64
hidden = 64
rbm = rbm_pytorch.RBM(n_vis=model_size, n_hid=hidden)
temperatures = [1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0]
T_ = np.zeros(13)
for i in range(13):
T_[i] = 1./(2.*temperatures[i])
matrices = [0 for i in range(13)]
matrices1 = [0 for i in range(13)]
T = []
T_err = []
n=0
for i in temperatures:
rbm.load_state_dict(torch.load("/scratch/RBM/RBM_paper/L8/best_machines/trained_rbm.pytorch.last."+str(i)))
w = rbm.W.data
wT = rbm.W.data.t()
v_bias = rbm.v_bias.data
h_bias = rbm.h_bias.data
H = np.zeros((model_size,model_size))
H1 = np.zeros((model_size,model_size))
for j1 in range(model_size):
for j2 in range(model_size):
for i in range(hidden):
H[j1][j2] += log((1.+ exp(h_bias[i]))*(1.+ exp(h_bias[i] + w[i][j1] + w[i][j2]))/((1.+ exp(h_bias[i]+w[i][j1]))*(1.+ exp(h_bias[i]+w[i][j2]))))
H1[j1][j2] += log((1.+ exp(v_bias[i]))*(1.+ exp(v_bias[i] + w[j1][i] + w[j2][i]))/((1.+ exp(v_bias[i]+w[j1][i]))*(1.+ exp(v_bias[i]+w[j2][i]))))
H = 1./8.*H
a = []
for j in range(model_size):
H[j][j] = 0
H1[j][j] = 0
for i in range(model_size-8):
a.append(H[i+8][i])
T.append(np.asarray(a).mean())
T_err.append(np.asarray(a).std())
matrices[n]=H
matrices1[n]=H1
n += 1
row = 2
columns = 7
for i in range(13):
plt.subplot(row,columns,i+1)
plt.imshow(matrices1[i])
plt.title(str(temperatures[i]))
plt.colorbar()
#plt.clim(0.1,0.3)
plt.show()
plt.close()
for i in range(13):
plt.subplot(row,columns,i+1)
plt.hist(matrices1[i].flatten())
plt.title(str(temperatures[i]))
#plt.colorbar()
#plt.clim(0.1,0.3)
plt.show()
plt.close()
for i in range(13):
plt.subplot(row,columns,i+1)
plt.imshow(matrices[i],vmin=0,vmax=0.2)
plt.title(str(temperatures[i]))
#plt.colorbar()
plt.clim(0.1,0.3)
plt.show()
plt.close()
for i in range(13):
plt.subplot(row,columns,i+1)
plt.hist(matrices[i].flatten())
plt.title(str(temperatures[i]))
#plt.colorbar()
#plt.clim(0.1,0.3)
plt.show()
plt.close()
T = np.asarray(T)
T_err = np.asarray(T_err)
plt.figure(figsize=(15, 5))
plt.scatter(temperatures, T_)
plt.errorbar(temperatures, T, yerr = T_err, elinewidth = 0.8)
#plt.suptitle("-Log-Likelihood vs number of epochs", fontsize=20)
#plt.ylabel("-LL", fontsize=18)
#plt.xlabel("epoch", fontsize=18)
plt.show()
#plt.savefig("/home/s1792848/Documents/RBM/rbm_ising/figs/LL_1.8.png")
plt.close()
"""
H1 = np.zeros((model_size,model_size))
for j1 in range(model_size):
for j2 in range(model_size):
H1[j1][j2] = 1./4.*log( (1.+ exp(h_bias[j2]+w[j2][j1])) / (1.+ exp(h_bias[j2])) )
h = np.zeros(model_size)
for j1 in range(model_size):
for j2 in range(model_size):
h[j1] += H1[j1][j2]
plt.plot(h)
plt.show()
H = np.zeros((model_size,model_size))
for j1 in range(model_size):
for j2 in range(model_size):
for i in range(hidden):
H[j1][j2] += log((1.+ exp(v_bias[i]))*(1.+ exp(v_bias[i] + w[j1][i] + w[j2][i]))/((1.+ exp(v_bias[i]+w[j1][i]))*(1.+ exp(v_bias[i]+w[j2][i]))))
H = 1./8.*H
for j in range(model_size):
H[j][j] = 0
plt.matshow(H,vmin=0,vmax=0.2)
plt.colorbar()
plt.show()
"""