Skip to content

Commit b900ea0

Browse files
committed
update digits DA hyper-parameters
1 parent e9a5cef commit b900ea0

File tree

9 files changed

+46
-64
lines changed

9 files changed

+46
-64
lines changed

examples/domain_adaptation/image_classification/README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,7 @@ pip install timm
1919

2020
Following datasets can be downloaded automatically:
2121

22+
- MNIST, SVHN, USPS
2223
- Office31
2324
- OfficeCaltech
2425
- OfficeHome

examples/domain_adaptation/image_classification/cdan.sh

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -75,19 +75,19 @@ CUDA_VISIBLE_DEVICES=0 python cdan.py data/domainnet -d DomainNet -s c i p q s -
7575
CUDA_VISIBLE_DEVICES=0 python cdan.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 1024 -r -rd 51200 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/cdan/DomainNet_:2s
7676

7777
# ResNet50, Wilds Dataset
78-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/cdan/iwildcam
78+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/cdan/iwildcam
7979

8080
# DenseNet121, Wilds Dataset
81-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
81+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
8282
-a densenet121 --scratch --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/cdan/camelyon17
83-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
83+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
8484
-a densenet121 --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/cdan/fmow
8585

8686
# Digits
87-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
87+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
8888
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/cdan/MNIST2USPS
89-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
89+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
9090
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/cdan/USPS2MNIST
91-
CUDA_VISIBLE_DEVICES=3 python cdan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
92-
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/cdan/SVHN2MNIST
91+
CUDA_VISIBLE_DEVICES=0 python cdan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
92+
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/cdan/SVHN2MNIST
9393

examples/domain_adaptation/image_classification/dan.sh

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -74,19 +74,19 @@ CUDA_VISIBLE_DEVICES=0 python dan.py data/domainnet -d DomainNet -s c i p q s -t
7474
CUDA_VISIBLE_DEVICES=0 python dan.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 1024 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/dan/DomainNet_:2s
7575

7676
# ResNet50, Wilds Dataset
77-
CUDA_VISIBLE_DEVICES=4 python dan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/dan/iwildcam
77+
CUDA_VISIBLE_DEVICES=0 python dan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/dan/iwildcam
7878

7979
# DenseNet121, Wilds Dataset
80-
CUDA_VISIBLE_DEVICES=4 python dan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
80+
CUDA_VISIBLE_DEVICES=0 python dan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
8181
-a densenet121 --scratch --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/dan/camelyon17
82-
CUDA_VISIBLE_DEVICES=4 python dan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
82+
CUDA_VISIBLE_DEVICES=0 python dan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
8383
-a densenet121 --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/dan/fmow
8484

8585
# Digits
86-
CUDA_VISIBLE_DEVICES=4 python dan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
86+
CUDA_VISIBLE_DEVICES=0 python dan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
8787
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/dan/MNIST2USPS
88-
CUDA_VISIBLE_DEVICES=4 python dan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
88+
CUDA_VISIBLE_DEVICES=0 python dan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
8989
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/dan/USPS2MNIST
90-
CUDA_VISIBLE_DEVICES=4 python dan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
91-
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/dan/SVHN2MNIST
90+
CUDA_VISIBLE_DEVICES=0 python dan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
91+
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/dan/SVHN2MNIST
9292

examples/domain_adaptation/image_classification/dann.sh

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -74,19 +74,18 @@ CUDA_VISIBLE_DEVICES=0 python dann.py data/domainnet -d DomainNet -s c i p q s -
7474
CUDA_VISIBLE_DEVICES=0 python dann.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 1024 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/dann/DomainNet_:2s
7575

7676
# ResNet50, Wilds Dataset
77-
CUDA_VISIBLE_DEVICES=5 python dann.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/dann/iwildcam
77+
CUDA_VISIBLE_DEVICES=0 python dann.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/dann/iwildcam
7878

7979
# DenseNet121, Wilds Dataset
80-
CUDA_VISIBLE_DEVICES=5 python dann.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
80+
CUDA_VISIBLE_DEVICES=0 python dann.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
8181
-a densenet121 --scratch --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/dann/camelyon17
82-
CUDA_VISIBLE_DEVICES=5 python dann.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
82+
CUDA_VISIBLE_DEVICES=0 python dann.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
8383
-a densenet121 --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/dann/fmow
8484

8585
# Digits
86-
CUDA_VISIBLE_DEVICES=5 python dann.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
86+
CUDA_VISIBLE_DEVICES=0 python dann.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
8787
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/dann/MNIST2USPS
88-
CUDA_VISIBLE_DEVICES=5 python dann.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
88+
CUDA_VISIBLE_DEVICES=0 python dann.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
8989
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/dann/USPS2MNIST
90-
CUDA_VISIBLE_DEVICES=5 python dann.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
90+
CUDA_VISIBLE_DEVICES=0 python dann.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
9191
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/dann/SVHN2MNIST
92-

examples/domain_adaptation/image_classification/jan.sh

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -74,19 +74,19 @@ CUDA_VISIBLE_DEVICES=0 python jan.py data/domainnet -d DomainNet -s c i p q s -t
7474
CUDA_VISIBLE_DEVICES=0 python jan.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 1024 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/jan/DomainNet_:2s
7575

7676
# ResNet50, Wilds Dataset
77-
CUDA_VISIBLE_DEVICES=6 python jan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/jan/iwildcam
77+
CUDA_VISIBLE_DEVICES=0 python jan.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/jan/iwildcam
7878

7979
# DenseNet121, Wilds Dataset
80-
CUDA_VISIBLE_DEVICES=6 python jan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
80+
CUDA_VISIBLE_DEVICES=0 python jan.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
8181
-a densenet121 --scratch --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/jan/camelyon17
82-
CUDA_VISIBLE_DEVICES=6 python jan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
82+
CUDA_VISIBLE_DEVICES=0 python jan.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
8383
-a densenet121 --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/jan/fmow
8484

8585
# Digits
86-
CUDA_VISIBLE_DEVICES=6 python jan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
86+
CUDA_VISIBLE_DEVICES=0 python jan.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
8787
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/jan/MNIST2USPS
88-
CUDA_VISIBLE_DEVICES=6 python jan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
88+
CUDA_VISIBLE_DEVICES=0 python jan.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
8989
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/jan/USPS2MNIST
90-
CUDA_VISIBLE_DEVICES=6 python jan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
90+
CUDA_VISIBLE_DEVICES=0 python jan.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
9191
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/jan/SVHN2MNIST
9292

examples/domain_adaptation/image_classification/mcc.sh

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -74,19 +74,19 @@ CUDA_VISIBLE_DEVICES=0 python mcc.py data/domainnet -d DomainNet -s c i p q s -t
7474
CUDA_VISIBLE_DEVICES=0 python mcc.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --bottleneck-dim 2048 --epochs 40 -i 5000 -p 500 --seed 0 --log logs/mcc/DomainNet_:2s
7575

7676
# ResNet50, Wilds Dataset
77-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --bottleneck-dim 2048 --log logs/mcc/iwildcam
77+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --bottleneck-dim 2048 --log logs/mcc/iwildcam
7878

7979
# DenseNet121, Wilds Dataset
80-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
80+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
8181
-a densenet121 --scratch --epochs 10 -i 1000 --lr 0.01 --seed 0 --log logs/mcc/camelyon17
82-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
82+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
8383
-a densenet121 --epochs 10 -i 1000 --lr 0.01 --seed 0 --bottleneck-dim 2048 --log logs/mcc/fmow
8484

8585
# Digits
86-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
86+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
8787
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/mcc/MNIST2USPS
88-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
88+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
8989
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/mcc/USPS2MNIST
90-
CUDA_VISIBLE_DEVICES=7 python mcc.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
91-
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.1 -b 128 -i 2500 --scratch --seed 0 --log logs/mcc/SVHN2MNIST
90+
CUDA_VISIBLE_DEVICES=0 python mcc.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
91+
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/mcc/SVHN2MNIST
9292

examples/domain_adaptation/image_classification/mdd.sh

Lines changed: 6 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -7,20 +7,6 @@ CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s A -t D -a resn
77
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s D -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 1 --log logs/mdd/Office31_D2A
88
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s W -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 1 --log logs/mdd/Office31_W2A
99

10-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s A -t W -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_A2W
11-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s D -t W -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_D2W
12-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s W -t D -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_W2D
13-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s A -t D -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_A2D
14-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s D -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_D2A
15-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s W -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 2 --log logs/mdd/Office31_W2A
16-
17-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s A -t W -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_A2W
18-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s D -t W -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_D2W
19-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s W -t D -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_W2D
20-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s A -t D -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_A2D
21-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s D -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_D2A
22-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office31 -d Office31 -s W -t A -a resnet50 --epochs 20 --bottleneck-dim 1024 --seed 3 --log logs/mdd/Office31_W2A
23-
2410
# ResNet50, Office-Home, Single Source
2511
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office-home -d OfficeHome -s Ar -t Cl -a resnet50 --epochs 30 --bottleneck-dim 2048 --seed 0 --log logs/mdd/OfficeHome_Ar2Cl
2612
CUDA_VISIBLE_DEVICES=0 python mdd.py data/office-home -d OfficeHome -s Ar -t Pr -a resnet50 --epochs 30 --bottleneck-dim 2048 --seed 0 --log logs/mdd/OfficeHome_Ar2Pr
@@ -91,19 +77,19 @@ CUDA_VISIBLE_DEVICES=0 python mdd.py data/domainnet -d DomainNet -s c i p q s -t
9177
CUDA_VISIBLE_DEVICES=0 python mdd.py data/domainnet -d DomainNet -s c i p q r -t s -a resnet101 --epochs 40 -i 5000 -p 500 --bottleneck-dim 2048 --seed 0 --lr 0.004 --log logs/mdd/DomainNet_:2s
9278

9379
# ResNet50, Wilds Dataset
94-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d iwildcam --train-resizing 'res' --val-resizing 'res' \
80+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d iwildcam --train-resizing 'res.' --val-resizing 'res.' \
9581
-a resnet50 --bottleneck-dim 2048 --epochs 30 -i 1000 --seed 0 --log logs/mdd/iwildcam
9682

9783
# DenseNet121, Wilds Dataset
98-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d camelyon17 --train-resizing 'res' --val-resizing 'res' --resize-size 96 \
84+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d camelyon17 --train-resizing 'res.' --val-resizing 'res.' --resize-size 96 \
9985
-a densenet121 --scratch --epochs 30 -i 1000 --lr 0.01 --seed 0 --log logs/mdd/camelyon17
100-
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d fmow --train-resizing 'res' --val-resizing 'res' \
86+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/wilds -d fmow --train-resizing 'res.' --val-resizing 'res.' \
10187
-a densenet121 --bottleneck-dim 2048 --epochs 30 -i 1000 --lr 0.01 --seed 0 --log logs/mdd/fmow
10288

10389
# Digits
104-
CUDA_VISIBLE_DEVICES=1 python mdd.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res' --val-resizing 'res' \
90+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/digits -d Digits -s MNIST -t USPS --train-resizing 'res.' --val-resizing 'res.' \
10591
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/mdd/MNIST2USPS
106-
CUDA_VISIBLE_DEVICES=1 python mdd.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res' --val-resizing 'res' \
92+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/digits -d Digits -s USPS -t MNIST --train-resizing 'res.' --val-resizing 'res.' \
10793
--resize-size 28 --no-hflip --norm-mean 0.5 --norm-std 0.5 -a lenet --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/mdd/USPS2MNIST
108-
CUDA_VISIBLE_DEVICES=1 python mdd.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res' --val-resizing 'res' \
94+
CUDA_VISIBLE_DEVICES=0 python mdd.py data/digits -d Digits -s SVHNRGB -t MNISTRGB --train-resizing 'res.' --val-resizing 'res.' \
10995
--resize-size 32 --no-hflip --norm-mean 0.5 0.5 0.5 --norm-std 0.5 0.5 0.5 -a dtn --no-pool --lr 0.01 -b 128 -i 2500 --scratch --seed 0 --log logs/mdd/SVHN2MNIST

examples/domain_adaptation/image_classification/self_ensemble.sh

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -25,10 +25,6 @@ CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/office-home -d OfficeHome -s
2525
CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/visda-2017 -d VisDA2017 -s Synthetic -t Real -a resnet101 \
2626
--epochs 20 --seed 0 --per-class-eval --log logs/self_ensemble/VisDA2017 --lr-gamma 0.0002 -b 32
2727

28-
# Wilds Dataset
29-
CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/wilds -d iwildcam -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/self_ensemble/iwildcam
30-
CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/wilds -d fmow -a resnet50 --epochs 30 -i 1000 --seed 0 --log logs/self_ensemble/fmow
31-
3228
# Office-Home on Vision Transformer
3329
CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/office-home -d OfficeHome -s Ar -t Cl -a vit_base_patch16_224 --no-pool --epochs 30 --seed 0 -b 24 --log logs/self_ensemble_vit/OfficeHome_Ar2Cl
3430
CUDA_VISIBLE_DEVICES=0 python self_ensemble.py data/office-home -d OfficeHome -s Ar -t Pr -a vit_base_patch16_224 --no-pool --epochs 30 --seed 0 -b 24 --log logs/self_ensemble_vit/OfficeHome_Ar2Pr

0 commit comments

Comments
 (0)