|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 3, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "name": "stdout", |
| 12 | + "output_type": "stream", |
| 13 | + "text": [ |
| 14 | + "(40,)\n", |
| 15 | + "[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.\n", |
| 16 | + " 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.\n", |
| 17 | + " 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.]\n", |
| 18 | + "[[ 0. 1. 2. 3.]\n", |
| 19 | + " [ 4. 5. 6. 7.]\n", |
| 20 | + " [ 8. 9. 10. 11.]\n", |
| 21 | + " [ 12. 13. 14. 15.]\n", |
| 22 | + " [ 16. 17. 18. 19.]\n", |
| 23 | + " [ 20. 21. 22. 23.]\n", |
| 24 | + " [ 24. 25. 26. 27.]\n", |
| 25 | + " [ 28. 29. 30. 31.]\n", |
| 26 | + " [ 32. 33. 34. 35.]\n", |
| 27 | + " [ 36. 37. 38. 39.]]\n" |
| 28 | + ] |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "import numpy as np\n", |
| 33 | + "\n", |
| 34 | + "embedding_size = 4\n", |
| 35 | + "vocab_size = 10\n", |
| 36 | + "\n", |
| 37 | + "embedding = np.arange(embedding_size * vocab_size, dtype='float')\n", |
| 38 | + "print(embedding.shape)\n", |
| 39 | + "print(embedding)\n", |
| 40 | + "\n", |
| 41 | + "embedding = embedding.reshape(vocab_size, embedding_size)\n", |
| 42 | + "print(embedding)" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": 5, |
| 48 | + "metadata": { |
| 49 | + "collapsed": false |
| 50 | + }, |
| 51 | + "outputs": [ |
| 52 | + { |
| 53 | + "data": { |
| 54 | + "text/plain": [ |
| 55 | + "array([ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.])" |
| 56 | + ] |
| 57 | + }, |
| 58 | + "execution_count": 5, |
| 59 | + "metadata": {}, |
| 60 | + "output_type": "execute_result" |
| 61 | + } |
| 62 | + ], |
| 63 | + "source": [ |
| 64 | + "i = 3\n", |
| 65 | + "onehot = np.zeros(vocab_size)\n", |
| 66 | + "onehot[i] = 1.\n", |
| 67 | + "onehot" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 6, |
| 73 | + "metadata": { |
| 74 | + "collapsed": false |
| 75 | + }, |
| 76 | + "outputs": [ |
| 77 | + { |
| 78 | + "name": "stdout", |
| 79 | + "output_type": "stream", |
| 80 | + "text": [ |
| 81 | + "[ 12. 13. 14. 15.]\n" |
| 82 | + ] |
| 83 | + } |
| 84 | + ], |
| 85 | + "source": [ |
| 86 | + "embedding_vector = np.dot(onehot, embedding)\n", |
| 87 | + "print(embedding_vector)" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 7, |
| 93 | + "metadata": { |
| 94 | + "collapsed": false |
| 95 | + }, |
| 96 | + "outputs": [ |
| 97 | + { |
| 98 | + "name": "stdout", |
| 99 | + "output_type": "stream", |
| 100 | + "text": [ |
| 101 | + "[ 12. 13. 14. 15.]\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "print(embedding[i])" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 8, |
| 112 | + "metadata": { |
| 113 | + "collapsed": false |
| 114 | + }, |
| 115 | + "outputs": [ |
| 116 | + { |
| 117 | + "name": "stderr", |
| 118 | + "output_type": "stream", |
| 119 | + "text": [ |
| 120 | + "Using TensorFlow backend.\n" |
| 121 | + ] |
| 122 | + } |
| 123 | + ], |
| 124 | + "source": [ |
| 125 | + "from tensorflow.contrib import keras\n", |
| 126 | + "from keras.layers import Embedding\n", |
| 127 | + "\n", |
| 128 | + "embedding_layer = Embedding(\n", |
| 129 | + " output_dim=embedding_size, input_dim=vocab_size,\n", |
| 130 | + " input_length=1, name='my_embedding')" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 10, |
| 136 | + "metadata": { |
| 137 | + "collapsed": false |
| 138 | + }, |
| 139 | + "outputs": [ |
| 140 | + { |
| 141 | + "data": { |
| 142 | + "text/plain": [ |
| 143 | + "(None, 1, 4)" |
| 144 | + ] |
| 145 | + }, |
| 146 | + "execution_count": 10, |
| 147 | + "metadata": {}, |
| 148 | + "output_type": "execute_result" |
| 149 | + } |
| 150 | + ], |
| 151 | + "source": [ |
| 152 | + "from keras.layers import Input\n", |
| 153 | + "from keras.models import Model\n", |
| 154 | + "\n", |
| 155 | + "x = Input(shape=[1], name='input')\n", |
| 156 | + "embedding = embedding_layer(x)\n", |
| 157 | + "model = Model(inputs=x, outputs=embedding)\n", |
| 158 | + "model.output_shape" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": 11, |
| 164 | + "metadata": { |
| 165 | + "collapsed": false |
| 166 | + }, |
| 167 | + "outputs": [ |
| 168 | + { |
| 169 | + "data": { |
| 170 | + "text/plain": [ |
| 171 | + "[array([[ 0.01890775, 0.00499418, -0.03474957, 0.02684459],\n", |
| 172 | + " [ 0.0318494 , -0.04652676, -0.02924601, 0.04009086],\n", |
| 173 | + " [-0.03589082, 0.0474348 , -0.04485966, 0.00298793],\n", |
| 174 | + " [-0.02304914, 0.01285596, -0.03610522, -0.00133644],\n", |
| 175 | + " [-0.04690611, -0.0206648 , 0.0260491 , -0.01262562],\n", |
| 176 | + " [ 0.01401315, 0.03188027, -0.02592033, -0.01135837],\n", |
| 177 | + " [-0.00707678, -0.01920606, 0.01314666, 0.04426006],\n", |
| 178 | + " [-0.02399683, 0.04837314, -0.03009446, -0.00333629],\n", |
| 179 | + " [ 0.02805784, -0.01677012, -0.0288386 , -0.00996032],\n", |
| 180 | + " [ 0.01646114, -0.03790113, -0.01738508, -0.04946321]], dtype=float32)]" |
| 181 | + ] |
| 182 | + }, |
| 183 | + "execution_count": 11, |
| 184 | + "metadata": {}, |
| 185 | + "output_type": "execute_result" |
| 186 | + } |
| 187 | + ], |
| 188 | + "source": [ |
| 189 | + "model.get_weights()" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 12, |
| 195 | + "metadata": { |
| 196 | + "collapsed": false |
| 197 | + }, |
| 198 | + "outputs": [ |
| 199 | + { |
| 200 | + "data": { |
| 201 | + "text/plain": [ |
| 202 | + "array([[[ 0.01890775, 0.00499418, -0.03474957, 0.02684459]],\n", |
| 203 | + "\n", |
| 204 | + " [[-0.02304914, 0.01285596, -0.03610522, -0.00133644]]], dtype=float32)" |
| 205 | + ] |
| 206 | + }, |
| 207 | + "execution_count": 12, |
| 208 | + "metadata": {}, |
| 209 | + "output_type": "execute_result" |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "model.predict([[0],\n", |
| 214 | + " [3]])" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": 14, |
| 220 | + "metadata": { |
| 221 | + "collapsed": false |
| 222 | + }, |
| 223 | + "outputs": [ |
| 224 | + { |
| 225 | + "data": { |
| 226 | + "text/plain": [ |
| 227 | + "(None, 4)" |
| 228 | + ] |
| 229 | + }, |
| 230 | + "execution_count": 14, |
| 231 | + "metadata": {}, |
| 232 | + "output_type": "execute_result" |
| 233 | + } |
| 234 | + ], |
| 235 | + "source": [ |
| 236 | + "from keras.layers import Flatten\n", |
| 237 | + "\n", |
| 238 | + "x = Input(shape=[1], name='input')\n", |
| 239 | + "\n", |
| 240 | + "# Add a flatten layer to remove useless \"sequence\" dimension\n", |
| 241 | + "y = Flatten()(embedding_layer(x))\n", |
| 242 | + "\n", |
| 243 | + "model2 = Model(inputs=x, outputs=y)\n", |
| 244 | + "model2.output_shape" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": 15, |
| 250 | + "metadata": { |
| 251 | + "collapsed": false |
| 252 | + }, |
| 253 | + "outputs": [ |
| 254 | + { |
| 255 | + "data": { |
| 256 | + "text/plain": [ |
| 257 | + "array([[ 0.01890775, 0.00499418, -0.03474957, 0.02684459],\n", |
| 258 | + " [-0.02304914, 0.01285596, -0.03610522, -0.00133644]], dtype=float32)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + "execution_count": 15, |
| 262 | + "metadata": {}, |
| 263 | + "output_type": "execute_result" |
| 264 | + } |
| 265 | + ], |
| 266 | + "source": [ |
| 267 | + "model2.predict([[0],\n", |
| 268 | + " [3]])" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": { |
| 275 | + "collapsed": true |
| 276 | + }, |
| 277 | + "outputs": [], |
| 278 | + "source": [] |
| 279 | + } |
| 280 | + ], |
| 281 | + "metadata": { |
| 282 | + "kernelspec": { |
| 283 | + "display_name": "Python 3", |
| 284 | + "language": "python", |
| 285 | + "name": "python3" |
| 286 | + }, |
| 287 | + "language_info": { |
| 288 | + "codemirror_mode": { |
| 289 | + "name": "ipython", |
| 290 | + "version": 3 |
| 291 | + }, |
| 292 | + "file_extension": ".py", |
| 293 | + "mimetype": "text/x-python", |
| 294 | + "name": "python", |
| 295 | + "nbconvert_exporter": "python", |
| 296 | + "pygments_lexer": "ipython3", |
| 297 | + "version": "3.5.3" |
| 298 | + } |
| 299 | + }, |
| 300 | + "nbformat": 4, |
| 301 | + "nbformat_minor": 2 |
| 302 | +} |
0 commit comments