|
189 | 189 | ] |
190 | 190 | }, |
191 | 191 | { |
192 | | - "metadata": {}, |
193 | 192 | "cell_type": "markdown", |
194 | | - "source": "## Initializing TMaRCo", |
195 | | - "id": "1eb7719e30054304" |
| 193 | + "id": "1eb7719e30054304", |
| 194 | + "metadata": {}, |
| 195 | + "source": [ |
| 196 | + "## Initializing TMaRCo" |
| 197 | + ] |
196 | 198 | }, |
197 | 199 | { |
198 | 200 | "cell_type": "code", |
|
205 | 207 | ] |
206 | 208 | }, |
207 | 209 | { |
208 | | - "metadata": {}, |
209 | 210 | "cell_type": "markdown", |
| 211 | + "id": "3e16ee305f4983d9", |
| 212 | + "metadata": {}, |
210 | 213 | "source": [ |
211 | 214 | "This will initialize `TMaRCo` using the default models, taken from HuggingFace.\n", |
212 | 215 | "<div class=\"alert alert-info\">\n", |
213 | | - "To use local models with TMaRCo, we need to have them in a local storage, accessible to TMaRCo, initialize separately, and pass them to TMaRCo's constructor.\n", |
| 216 | + "To use local models with TMaRCo, we need to have the pre-initialized models in a local storage that is accessible to TMaRCo.\n", |
214 | 217 | "</div>\n", |
215 | 218 | "For instance, to use the default `facebook/bart-large` model, but locally. First, we would need to retrieve the model:" |
216 | | - ], |
217 | | - "id": "3e16ee305f4983d9" |
| 219 | + ] |
218 | 220 | }, |
219 | 221 | { |
220 | | - "metadata": {}, |
221 | 222 | "cell_type": "code", |
222 | | - "outputs": [], |
223 | 223 | "execution_count": null, |
| 224 | + "id": "614c9ff6f46a0ea9", |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [], |
224 | 227 | "source": [ |
225 | 228 | "from huggingface_hub import snapshot_download\n", |
226 | 229 | "\n", |
227 | 230 | "snapshot_download(repo_id=\"facebook/bart-large\", local_dir=\"models/bart\")" |
228 | | - ], |
229 | | - "id": "614c9ff6f46a0ea9" |
| 231 | + ] |
230 | 232 | }, |
231 | 233 | { |
232 | | - "metadata": {}, |
233 | 234 | "cell_type": "markdown", |
234 | | - "source": "We now initialize the base model and tokenizer from local files and pass them to `TMaRCo`:", |
235 | | - "id": "95bd792e757205d6" |
| 235 | + "id": "95bd792e757205d6", |
| 236 | + "metadata": {}, |
| 237 | + "source": [ |
| 238 | + "We now initialize the base model and tokenizer from local files and pass them to `TMaRCo`:" |
| 239 | + ] |
236 | 240 | }, |
237 | 241 | { |
238 | | - "metadata": {}, |
239 | 242 | "cell_type": "code", |
| 243 | + "execution_count": null, |
| 244 | + "id": "f0f24485822a7c3f", |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [], |
240 | 247 | "source": [ |
241 | 248 | "from transformers import BartForConditionalGeneration, BartTokenizer\n", |
242 | 249 | "\n", |
243 | 250 | "tokenizer = BartTokenizer.from_pretrained(\n", |
244 | | - " \"models/bart\", # Or directory where the local model is stored \n", |
| 251 | + " \"models/bart\", # Or directory where the local model is stored\n", |
245 | 252 | " is_split_into_words=True, add_prefix_space=True\n", |
246 | 253 | ")\n", |
247 | 254 | "\n", |
|
255 | 262 | "\n", |
256 | 263 | "# Initialize TMaRCo with local models\n", |
257 | 264 | "tmarco = TMaRCo(tokenizer=tokenizer, base_model=base)" |
258 | | - ], |
259 | | - "id": "f0f24485822a7c3f", |
260 | | - "outputs": [], |
261 | | - "execution_count": null |
| 265 | + ] |
262 | 266 | }, |
263 | 267 | { |
264 | 268 | "cell_type": "code", |
|
286 | 290 | ] |
287 | 291 | }, |
288 | 292 | { |
289 | | - "metadata": {}, |
290 | 293 | "cell_type": "markdown", |
| 294 | + "id": "c113208c527c342e", |
| 295 | + "metadata": {}, |
291 | 296 | "source": [ |
292 | 297 | "<div class=\"alert alert-info\">\n", |
293 | | - "To use local expert/anti-expert models with TMaRCo, we need to have them in a local storage, accessible to TMaRCo, as previously.\n", |
| 298 | + "To use local expert/anti-expert models with TMaRCo, we need to have them in a local storage that is accessible to TMaRCo, as previously.\n", |
| 299 | + "\n", |
294 | 300 | "However, we don't need to initialize them separately, and can pass the directory directly.\n", |
295 | 301 | "</div>\n", |
296 | 302 | "If we want to use local models with `TMaRCo` (in this case the same default `gminus`/`gplus`):\n" |
297 | | - ], |
298 | | - "id": "c113208c527c342e" |
| 303 | + ] |
299 | 304 | }, |
300 | 305 | { |
301 | | - "metadata": {}, |
302 | 306 | "cell_type": "code", |
303 | | - "outputs": [], |
304 | 307 | "execution_count": null, |
| 308 | + "id": "dfa288dcb60102c", |
| 309 | + "metadata": {}, |
| 310 | + "outputs": [], |
305 | 311 | "source": [ |
306 | 312 | "snapshot_download(repo_id=\"trustyai/gminus\", local_dir=\"models/gminus\")\n", |
307 | 313 | "snapshot_download(repo_id=\"trustyai/gplus\", local_dir=\"models/gplus\")\n", |
308 | 314 | "\n", |
309 | 315 | "tmarco.load_models([\"models/gminus\", \"models/gplus\"])" |
310 | | - ], |
311 | | - "id": "dfa288dcb60102c" |
| 316 | + ] |
312 | 317 | }, |
313 | 318 | { |
314 | 319 | "cell_type": "code", |
|
450 | 455 | ] |
451 | 456 | }, |
452 | 457 | { |
453 | | - "metadata": {}, |
454 | 458 | "cell_type": "markdown", |
455 | | - "source": "As noted previously, to use local models, simply pass the initialized tokenizer and base model to the constructor, and the local path as the expert/anti-expert:", |
456 | | - "id": "b0738c324227f57" |
| 459 | + "id": "b0738c324227f57", |
| 460 | + "metadata": {}, |
| 461 | + "source": [ |
| 462 | + "As noted previously, to use local models, simply pass the initialized tokenizer and base model to the constructor, and the local path as the expert/anti-expert:" |
| 463 | + ] |
457 | 464 | }, |
458 | 465 | { |
459 | | - "metadata": {}, |
460 | 466 | "cell_type": "code", |
461 | | - "outputs": [], |
462 | 467 | "execution_count": null, |
| 468 | + "id": "b929e21a97ea914e", |
| 469 | + "metadata": {}, |
| 470 | + "outputs": [], |
463 | 471 | "source": [ |
464 | 472 | "tmarco = TMaRCo(tokenizer=tokenizer, base_model=base)\n", |
465 | 473 | "tmarco.load_models([\"models/gminus\", \"models/gplus\"])" |
466 | | - ], |
467 | | - "id": "b929e21a97ea914e" |
| 474 | + ] |
468 | 475 | }, |
469 | 476 | { |
470 | 477 | "cell_type": "markdown", |
|
0 commit comments