-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_SoftmaxLoss.py
198 lines (155 loc) · 7.18 KB
/
Train_SoftmaxLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import torch.nn as nn
import torchvision.models as models
import numpy as np
import torch.utils.data as data
import os
import cv2
import scipy.misc
from datetime import datetime
from logger import Logger
import sys
import argparse
device = torch.device('cuda:0')
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--logs_dir',type = str,
help='Directory where to write event logs',default = 'C:\\Users\\Shinelon\\Desktop\\Eye gaze estimation\\logs\\')
parser.add_argument('--models_dir',type=str,
help='Directory where to write trained models and checkpoints.',default='C:\\Users\\Shinelon\\Desktop\\Eye gaze estimation\\checkpoints\\')
parser.add_argument('--pretrained_model',type=str,help='Loading a pretrained model before training.',default='')
parser.add_argument('--max_nrog_epochs',type = int,help='Number of epochs to run.',default = 5)
parser.add_argument('--batch_size',type=int,help='Number of images to process in a batch.',default = 32)
parser.add_argument('--num_classes',type=int,help='Total number of classes',default = 5)
parser.add_argument('--learning_rate',type=float,default = 0.0001)
parser.add_argument('--learning_rate_file',type=str,
help='When --learing_rate is set to -1, the learning rate will be got from this file.',default='..\\learning_rate\\learning_rate.txt')
parser.add_argument('--optimizer',type = str,choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP'],
help='The optimization algorithm to use',default='ADAM')
parser.add_argument('--image_dir',type = str,default='F:\\Gaze_estimator\\train_images\\train_144_52\\train\\All\\')
parser.add_argument('--labels_file',type = str,default ='F:\\Gaze_estimator\\train_images\\train_144_52\\train.txt')
return parser.parse_args(argv)
def get_learning_rate_from_file(filename, epoch):
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split('#', 1)[0]
if line:
par = line.strip().split(':')
e = int(par[0])
lr = float(par[1])
if e <= epoch:
learning_rate = lr
else:
return learning_rate
def make_dataset(labels_file):
dataset = []
flabel = labels_file
f = open(flabel)
lines = f.readlines()
for line in lines:
line = line.strip('\n')
line = line.split(' ')
dataset.append(line)
f.close()
return dataset
class EyeDirection(data.Dataset):
def __init__(self,labels_file,image_dir,transform=None,train = False):
self.train = train
self.eye_data = make_dataset(labels_file)
self.image_dir = image_dir
def __getitem__(self,idx):
img_name,label = self.eye_data[idx]
label = int(label)-1
img_dir = os.path.join(self.image_dir,img_name)
img = scipy.misc.imread(img_dir, mode='RGB')
#img = scipy.misc.imresize(img, (120, 120), interp='bilinear')
img = np.atleast_3d(img).transpose(2,0,1).astype(np.float32)
mean = np.mean(img)
std = np.std(img)
std_adj = np.maximum(std,1.0/np.sqrt(img.size))
img = np.multiply(np.subtract(img,mean),1/std_adj)
img = torch.from_numpy(img)
#print(img.dtype)
#img = img.reshape(-1,160,160,3)
#label ont_hot
#label1 = torch.randn(1,5)
#label = label1==label1[0,int(label)]
#label = label.long()
#label = torch.reshape(label,(num_classes,))
label1 = np.ones(1,)
label = int(label)*label1
label = torch.from_numpy(label)
label = label.long()
#print(label.size())
return img,label
def __len__(self):
return len(self.eye_data)
class FeatureExract(nn.Module):
def __init__(self,num_classes):
super(FeatureExract,self).__init__()
resnet = models.resnet18(pretrained=True)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.linear = nn.Linear(resnet.fc.in_features,num_classes,bias=True)
#torch.nn.Dropout(0.5)
##
def forward(self,images):
features = self.resnet(images)
#print(features[0,1])
features = features.reshape(features.size(0),-1)
features = self.linear(features)
return features
def main(args):
eyedirection = EyeDirection(args.labels_file,args.image_dir)
train_loader = torch.utils.data.DataLoader(dataset=eyedirection,batch_size=args.batch_size,shuffle=True)
model = FeatureExract(args.num_classes).to(device)
if args.pretrained_model!='':
model = torch.load(args.pretrained_model)
model = model.cuda()
#Loss and optimizer
criterion = nn.CrossEntropyLoss()
criterion.cuda()
#['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM']
if args.optimizer == 'ADAM':
optimizer = torch.optim.Adam(model.parameters(),lr = args.learning_rate)
elif args.optimizer == 'ADAGRAD':
optimizer = torch.optim.Adagrad(model.parameters(),lr = args.learning_rate)
elif args.optimizer == 'ADADELTA':
optimizer = torch.optim.Adadelta(model.parameters(),lr = args.learning_rate)
elif args.optimizer == 'RMSPROP':
optimizer = torch.optim.RMSprop(model.parameters(),lr = args.learning_rate)
#Train the model
total_step = len(train_loader)
print(total_step)
print('GPU ID: ',torch.cuda.current_device())
tf_logger = Logger(args.logs_dir)
j=0
for epoch in range(args.max_nrog_epochs):
lr = get_learning_rate_from_file(args.learning_rate_file,epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
for i,(images,labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
#forward pass
outputs = model(images)
#print(outputs)
#
#labels = labels.squeeze()
loss = criterion(outputs,labels.squeeze())
#backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
j=j+1
_,argmax = torch.max(outputs,1)
accuracy = (labels == argmax.squeeze()).float().mean()
if (i+1) %10 ==0:
print('Epoch [ {}/{}],Step [{}/{}],Loss: {:.4f},Accuracy: {:.4f},lr: {:.8f}'.format(epoch+1,args.max_nrog_epochs,i+1,total_step,loss.item(),accuracy.item(),optimizer.param_groups[0]['lr']))
model_name = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
torch.save(model,args.models_dir+model_name+'.ckpt')
info = {'loss': loss.item(),'accuracy': accuracy.item()}
for tag, value in info.items():
tf_logger.scalar_summary(tag, value, j)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))