|
| 1 | +# [1955. Count Number of Special Subsequences](https://leetcode.com/problems/count-number-of-special-subsequences) |
| 2 | + |
| 3 | +## Description |
| 4 | + |
| 5 | +<div class="elfjS" data-track-load="description_content"><p>A sequence is <strong>special</strong> if it consists of a <strong>positive</strong> number of <code>0</code>s, followed by a <strong>positive</strong> number of <code>1</code>s, then a <strong>positive</strong> number of <code>2</code>s.</p> |
| 6 | + |
| 7 | +<ul> |
| 8 | + <li>For example, <code>[0,1,2]</code> and <code>[0,0,1,1,1,2]</code> are special.</li> |
| 9 | + <li>In contrast, <code>[2,1,0]</code>, <code>[1]</code>, and <code>[0,1,2,0]</code> are not special.</li> |
| 10 | +</ul> |
| 11 | + |
| 12 | +<p>Given an array <code>nums</code> (consisting of <strong>only</strong> integers <code>0</code>, <code>1</code>, and <code>2</code>), return<em> the <strong>number of different subsequences</strong> that are special</em>. Since the answer may be very large, <strong>return it modulo </strong><code>10<sup>9</sup> + 7</code>.</p> |
| 13 | + |
| 14 | +<p>A <strong>subsequence</strong> of an array is a sequence that can be derived from the array by deleting some or no elements without changing the order of the remaining elements. Two subsequences are <strong>different</strong> if the <strong>set of indices</strong> chosen are different.</p> |
| 15 | + |
| 16 | +<p> </p> |
| 17 | +<p><strong class="example">Example 1:</strong></p> |
| 18 | + |
| 19 | +<pre><strong>Input:</strong> nums = [0,1,2,2] |
| 20 | +<strong>Output:</strong> 3 |
| 21 | +<strong>Explanation:</strong> The special subsequences are bolded [<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>,2], [<strong><u>0</u></strong>,<strong><u>1</u></strong>,2,<strong><u>2</u></strong>], and [<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>,<strong><u>2</u></strong>]. |
| 22 | +</pre> |
| 23 | + |
| 24 | +<p><strong class="example">Example 2:</strong></p> |
| 25 | + |
| 26 | +<pre><strong>Input:</strong> nums = [2,2,0,0] |
| 27 | +<strong>Output:</strong> 0 |
| 28 | +<strong>Explanation:</strong> There are no special subsequences in [2,2,0,0]. |
| 29 | +</pre> |
| 30 | + |
| 31 | +<p><strong class="example">Example 3:</strong></p> |
| 32 | + |
| 33 | +<pre><strong>Input:</strong> nums = [0,1,2,0,1,2] |
| 34 | +<strong>Output:</strong> 7 |
| 35 | +<strong>Explanation:</strong> The special subsequences are bolded: |
| 36 | +- [<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>,0,1,2] |
| 37 | +- [<strong><u>0</u></strong>,<strong><u>1</u></strong>,2,0,1,<strong><u>2</u></strong>] |
| 38 | +- [<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>,0,1,<strong><u>2</u></strong>] |
| 39 | +- [<strong><u>0</u></strong>,<strong><u>1</u></strong>,2,0,<strong><u>1</u></strong>,<strong><u>2</u></strong>] |
| 40 | +- [<strong><u>0</u></strong>,1,2,<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>] |
| 41 | +- [<strong><u>0</u></strong>,1,2,0,<strong><u>1</u></strong>,<strong><u>2</u></strong>] |
| 42 | +- [0,1,2,<strong><u>0</u></strong>,<strong><u>1</u></strong>,<strong><u>2</u></strong>] |
| 43 | +</pre> |
| 44 | + |
| 45 | +<p> </p> |
| 46 | +<p><strong>Constraints:</strong></p> |
| 47 | + |
| 48 | +<ul> |
| 49 | + <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> |
| 50 | + <li><code>0 <= nums[i] <= 2</code></li> |
| 51 | +</ul> |
| 52 | +</div> |
| 53 | + |
| 54 | +<p> </p> |
| 55 | + |
| 56 | +## Solutions |
| 57 | + |
| 58 | +**Solution: `Dynamic Programming`** |
| 59 | + |
| 60 | +- Time complexity: <em>O(n)</em> |
| 61 | +- Space complexity: <em>O(1)</em> |
| 62 | + |
| 63 | +<p> </p> |
| 64 | + |
| 65 | +### **JavaScript** |
| 66 | + |
| 67 | +```js |
| 68 | +/** |
| 69 | + * @param {number[]} nums |
| 70 | + * @return {number} |
| 71 | + */ |
| 72 | +const countSpecialSubsequences = function (nums) { |
| 73 | + const MODULO = 10 ** 9 + 7; |
| 74 | + const dp = [1, 0, 0, 0]; |
| 75 | + |
| 76 | + for (const num of nums) { |
| 77 | + dp[num + 1] = (dp[num + 1] * 2 + dp[num]) % MODULO; |
| 78 | + } |
| 79 | + |
| 80 | + return dp[3]; |
| 81 | +}; |
| 82 | +``` |
0 commit comments