|
| 1 | +# [1819. Number of Different Subsequences GCDs](https://leetcode.com/problems/number-of-different-subsequences-gcds) |
| 2 | + |
| 3 | +## Description |
| 4 | + |
| 5 | +<div class="elfjS" data-track-load="description_content"><p>You are given an array <code>nums</code> that consists of positive integers.</p> |
| 6 | + |
| 7 | +<p>The <strong>GCD</strong> of a sequence of numbers is defined as the greatest integer that divides <strong>all</strong> the numbers in the sequence evenly.</p> |
| 8 | + |
| 9 | +<ul> |
| 10 | + <li>For example, the GCD of the sequence <code>[4,6,16]</code> is <code>2</code>.</li> |
| 11 | +</ul> |
| 12 | + |
| 13 | +<p>A <strong>subsequence</strong> of an array is a sequence that can be formed by removing some elements (possibly none) of the array.</p> |
| 14 | + |
| 15 | +<ul> |
| 16 | + <li>For example, <code>[2,5,10]</code> is a subsequence of <code>[1,2,1,<strong><u>2</u></strong>,4,1,<u><strong>5</strong></u>,<u><strong>10</strong></u>]</code>.</li> |
| 17 | +</ul> |
| 18 | + |
| 19 | +<p>Return <em>the <strong>number</strong> of <strong>different</strong> GCDs among all <strong>non-empty</strong> subsequences of</em> <code>nums</code>.</p> |
| 20 | + |
| 21 | +<p> </p> |
| 22 | +<p><strong class="example">Example 1:</strong></p> |
| 23 | +<img alt="" src="https://assets.leetcode.com/uploads/2021/03/17/image-1.png" style="width: 149px; height: 309px;"> |
| 24 | +<pre><strong>Input:</strong> nums = [6,10,3] |
| 25 | +<strong>Output:</strong> 5 |
| 26 | +<strong>Explanation:</strong> The figure shows all the non-empty subsequences and their GCDs. |
| 27 | +The different GCDs are 6, 10, 3, 2, and 1. |
| 28 | +</pre> |
| 29 | + |
| 30 | +<p><strong class="example">Example 2:</strong></p> |
| 31 | + |
| 32 | +<pre><strong>Input:</strong> nums = [5,15,40,5,6] |
| 33 | +<strong>Output:</strong> 7 |
| 34 | +</pre> |
| 35 | + |
| 36 | +<p> </p> |
| 37 | +<p><strong>Constraints:</strong></p> |
| 38 | + |
| 39 | +<ul> |
| 40 | + <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> |
| 41 | + <li><code>1 <= nums[i] <= 2 * 10<sup>5</sup></code></li> |
| 42 | +</ul> |
| 43 | +</div> |
| 44 | + |
| 45 | +<p> </p> |
| 46 | + |
| 47 | +## Solutions |
| 48 | + |
| 49 | +**Solution: `Math`** |
| 50 | + |
| 51 | +- Time complexity: <em>O(nlogn)</em> |
| 52 | +- Space complexity: <em>O(n)</em> |
| 53 | + |
| 54 | +<p> </p> |
| 55 | + |
| 56 | +### **JavaScript** |
| 57 | + |
| 58 | +```js |
| 59 | +/** |
| 60 | + * @param {number[]} nums |
| 61 | + * @return {number} |
| 62 | + */ |
| 63 | +const countDifferentSubsequenceGCDs = function (nums) { |
| 64 | + const maxNum = Math.max(...nums); |
| 65 | + const factors = Array.from({ length: maxNum + 1 }, () => 0); |
| 66 | + let result = 0; |
| 67 | + |
| 68 | + const gcd = (a, b) => (b ? gcd(b, a % b) : a); |
| 69 | + |
| 70 | + for (const num of nums) { |
| 71 | + for (let a = 1; a ** 2 <= num; a++) { |
| 72 | + if (num % a) continue; |
| 73 | + const b = num / a; |
| 74 | + |
| 75 | + factors[a] = gcd(num, factors[a]); |
| 76 | + factors[b] = gcd(num, factors[b]); |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + for (let num = 1; num <= maxNum; num++) { |
| 81 | + if (num === factors[num]) { |
| 82 | + result += 1; |
| 83 | + } |
| 84 | + } |
| 85 | + |
| 86 | + return result; |
| 87 | +}; |
| 88 | +``` |
0 commit comments