Skip to content

Latest commit

 

History

History
74 lines (57 loc) · 1.68 KB

README.md

File metadata and controls

74 lines (57 loc) · 1.68 KB

Weather Trend Forecasting Project

This project analyzes the Global Weather Repository dataset to forecast weather trends using both basic and advanced techniques.

Project Structure

  • data_loader.py: Handles data loading, cleaning, and preprocessing
  • exploratory_analysis.py: Contains EDA functions and visualizations
  • forecasting_models.py: Implements various forecasting models
  • main.py: Main script that orchestrates the analysis

Features

Basic Assessment

  • Data cleaning and preprocessing
  • Missing value handling
  • Outlier detection and treatment
  • Basic EDA with visualizations
  • Temperature trend analysis
  • Basic forecasting model

Advanced Assessment

  • Multiple forecasting models (Linear Regression, Random Forest, XGBoost)
  • Ensemble modeling
  • Geographical pattern analysis
  • Correlation analysis
  • Feature importance analysis

Requirements

  • Python 3.8+
  • pandas
  • numpy
  • scikit-learn
  • matplotlib
  • seaborn
  • xgboost

Usage

  1. Install required packages:
pip install pandas numpy scikit-learn matplotlib seaborn xgboost
  1. Place the "Global Weather Repository.csv" file in the project directory

  2. Run the analysis:

python main.py

Results

The analysis includes:

  • Visualization of temperature trends
  • Correlation analysis of weather parameters
  • Geographical weather patterns
  • Model performance metrics
  • Ensemble predictions

Model Evaluation

The project evaluates multiple models:

  • Linear Regression
  • Random Forest
  • XGBoost
  • Ensemble of all models

Metrics used:

  • Mean Squared Error (MSE)
  • Mean Absolute Error (MAE)
  • R-squared Score# weather-trend-forecasting Advanced analysis of global weather trends using Python.