Skip to content

Commit 2184ff3

Browse files
author
Your Named
committed
update diff
1 parent fa47dfa commit 2184ff3

File tree

1 file changed

+36
-62
lines changed

1 file changed

+36
-62
lines changed

diff.tex

Lines changed: 36 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
%% This is file `cag-template.tex',
22
%DIF LATEXDIFF DIFFERENCE FILE
3-
%DIF DEL /dir/cag-template_old.tex Fri Dec 2 01:47:24 2022
4-
%DIF ADD /dir/cag-template.tex Fri Dec 2 01:47:24 2022
3+
%DIF DEL /dir/cag-template_old.tex Mon Dec 5 16:00:12 2022
4+
%DIF ADD /dir/cag-template.tex Mon Dec 5 16:00:12 2022
55
%%
66
%% Copyright 2018 Elsevier Ltd
77
%%
@@ -159,7 +159,7 @@
159159
%% main text
160160
\section{Introduction}
161161
\label{sec1}
162-
\DIFaddbegin
162+
\DIFdelbegin \DIFdel{The physics-based }\DIFdelend \DIFaddbegin
163163

164164
%DIF > \begin{equation}
165165
%DIF > \left[\begin{array}{ccc}
@@ -169,7 +169,7 @@ \section{Introduction}
169169
%DIF > \end{array}\right]
170170
%DIF > \end{equation}
171171

172-
\DIFaddend The physics-based fluid simulation has great application value in \DIFdelbegin \DIFdel{the fields of both Computer-aided }\DIFdelend \DIFaddbegin \DIFadd{computer-aided }\DIFaddend Engineering (CAE) and Computer Graphics (CG) \DIFaddbegin \DIFadd{fields}\DIFaddend .
172+
\DIFadd{The physics based }\DIFaddend fluid simulation has great application value in \DIFdelbegin \DIFdel{the fields of both Computer-aided }\DIFdelend \DIFaddbegin \DIFadd{computer-aided }\DIFaddend Engineering (CAE) and Computer Graphics (CG) \DIFaddbegin \DIFadd{fields}\DIFaddend .
173173
Among all the simulation methods, the \emph{particle-based} approaches like \emph{Smoothed Particle Hydrodynamics} (SPH) have received much attention for their algorithmic efficiency and application flexibility~\cite{Ihmsen14}.
174174
However, for the visualization of particle-based simulation results, tracing surfaces for particle-represented fluid has been the computation bottleneck of the whole process. Hence, how to efficiently visualize the simulated fluid while maintaining proper fidelity has become a hot research topic.
175175

@@ -238,10 +238,10 @@ \subsection{Depth Information}
238238
% \setlength{\belowcaptionskip}{-5mm}
239239
\centering
240240
\subfigure[isotropic] {
241-
\includegraphics[width=0.46\linewidth]{figs/isotropic.png}
241+
\includegraphics[width=0.47\linewidth]{figs/isotropic.png}
242242
}
243243
\subfigure[anisotropic] {
244-
\includegraphics[width=0.46\linewidth]{figs/anisotropic.png}
244+
\includegraphics[width=0.47\linewidth]{figs/anisotropic.png}
245245
}
246246
\caption{Comparison of isotropic and anisotropic fluid particles.}
247247
\label{fig:figure3}
@@ -313,11 +313,11 @@ \subsection{Normal Reconstruction and Surface Shading}
313313
%DIF > \setlength{\belowcaptionskip}{-5mm}
314314
\centering
315315
\subfigure[isotropic] {
316-
\includegraphics[width=0.47\linewidth]{figs/figure5_1_new.png}
316+
\includegraphics[width=0.48\linewidth]{figs/figure5_1_new.png}
317317
}
318318
\DIFaddFL{\hspace{-7pt}
319319
}\subfigure[anisotropic] {
320-
\includegraphics[width=0.47\linewidth]{figs/figure5_2_new.png}
320+
\includegraphics[width=0.48\linewidth]{figs/figure5_2_new.png}
321321
}
322322
\caption{\DIFaddFL{Experimental comparison of isotropy and anisotropy in the dam break scenario.}}
323323
\label{fig:figure4}
@@ -494,32 +494,18 @@ \section{\DIFadd{Results and Analysis}}
494494

495495
\DIFaddend The experiments below are performed using a hardware platform of AMD Ryzen 7 5800H @3.20 GHz, 32GB memory, and NVIDIA RTX 3060. The 3D graphics API OpenGL is used for particle rendering, and C++ is used as the hardware graphics interactive language to process logical operations. In addition, GLSL colouring language is used to calculate the fluid optical effect in GPU. The real-time performance of fluid is maintained during all experiments.
496496

497-
% \DIFaddbegin \begin{figure}[!b]
498-
% \centering
499-
% \begin{overpic}
500-
% [\DIFaddFL{width=}\linewidth]{\DIFaddFL{figs/figure9.png}}
501-
% \put(6,-2) {\footnotesize \DIFaddFL{Gaussian}}
502-
% \put(25,-2) {\footnotesize \DIFaddFL{Bilateral Gaussian}}
503-
% \put(53,-2) {\footnotesize \DIFaddFL{Curvature Flow}}
504-
% \put(78,-2) {\footnotesize \DIFaddFL{Narrow-Range}}
505-
% \end{overpic}
506-
% \caption{\DIFaddFL{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.
507-
% %DIF > All methods use the same number of iterations ($iter = 2$) except the curvature flow-based method with a larger number ($iter = 80$).
508-
% }}
509-
% \label{fig:figure6}
510-
% \end{figure}
511-
\begin{figure}[!b]
497+
\DIFaddbegin \begin{figure}[!b]
512498
\centering
513499
\begin{overpic}
514-
[width=\linewidth]{figs/figure9.png}
515-
\put(6,-2) {\footnotesize Gaussian}
516-
\put(25,-2) {\footnotesize Bilateral Gaussian}
517-
\put(53,-2) {\footnotesize Curvature Flow}
518-
\put(78,-2) {\footnotesize Narrow-Range}
500+
[\DIFaddFL{width=}\linewidth]{\DIFaddFL{figs/figure9.png}}
501+
\put(6,-2) {\footnotesize \DIFaddFL{Gaussian}}
502+
\put(25,-2) {\footnotesize \DIFaddFL{Bilateral Gaussian}}
503+
\put(53,-2) {\footnotesize \DIFaddFL{Curvature Flow}}
504+
\put(78,-2) {\footnotesize \DIFaddFL{Narrow-Range}}
519505
\end{overpic}
520-
\caption{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.
521-
% All methods use the same number of iterations ($iter = 2$) except the curvature flow-based method with a larger number ($iter = 80$).
522-
}
506+
\caption{\DIFaddFL{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.
507+
%DIF > All methods use the same number of iterations ($iter = 2$) except the curvature flow-based method with a larger number ($iter = 80$).
508+
}}
523509
\label{fig:figure6}
524510
\end{figure}
525511

@@ -528,39 +514,27 @@ \section{\DIFadd{Results and Analysis}}
528514

529515
In addition, experimental verification is conducted for a fluid-solid coupling scenario, as shown in Fig.~\ref{fig:figure5}. In the fluid-solid coupling scenario, real-time fluid rendering based on the anisotropic algorithm shows better surface results with smoother surfaces, especially at the interface between the rigid body and liquid.
530516

531-
% \DIFdelbegin %DIFDELCMD < \begin{figure}[!t]
532-
% %DIFDELCMD < %%%
533-
% \DIFdelendFL \DIFaddbeginFL \begin{figure}[htpb]
534-
% \DIFaddendFL \centering
535-
% \begin{overpic}
536-
% [width=\linewidth]{figs/\DIFdelbeginFL \DIFdelFL{figure9}\DIFdelendFL \DIFaddbeginFL \DIFaddFL{figure10}\DIFaddendFL .png}
537-
% \DIFdelbeginFL %DIFDELCMD < \put(6,-2) %%%
538-
% \DIFdelendFL \DIFaddbeginFL \put(6,-3) \DIFaddendFL {\footnotesize Gaussian}
539-
% \DIFdelbeginFL %DIFDELCMD < \put(25,-2) %%%
540-
% \DIFdelendFL \DIFaddbeginFL \put(25.5,-3) \DIFaddendFL {\footnotesize Bilateral Gaussian}
541-
% \DIFdelbeginFL %DIFDELCMD < \put(53,-2) %%%
542-
% \DIFdelendFL \DIFaddbeginFL \put(54,-3) \DIFaddendFL {\footnotesize Curvature Flow}
543-
% \DIFdelbeginFL %DIFDELCMD < \put(78,-2) %%%
544-
% \DIFdelendFL \DIFaddbeginFL \put(78,-3) \DIFaddendFL {\footnotesize Narrow-Range}
545-
% \end{overpic}
546-
% \caption{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.%DIF < All methods use the same number of iterations ($iter = 2$) except the curvature flow-based method with a larger number ($iter = 80$).
547-
% }
548-
% \DIFdelbeginFL %DIFDELCMD < \label{fig:figure6}
549-
% %DIFDELCMD < %%%
550-
% \DIFdelendFL \DIFaddbeginFL \label{fig:figure7}
551-
% \DIFaddendFL \end{figure}
552-
\begin{figure}[htpb]
553-
\centering
517+
\DIFdelbegin %DIFDELCMD < \begin{figure}[!t]
518+
%DIFDELCMD < %%%
519+
\DIFdelendFL \DIFaddbeginFL \begin{figure}[htpb]
520+
\DIFaddendFL \centering
554521
\begin{overpic}
555-
[width=\linewidth]{figs/figure10.png}
556-
\put(6,-3) {\footnotesize Gaussian}
557-
\put(25.5,-3) {\footnotesize Bilateral Gaussian}
558-
\put(54,-3) {\footnotesize Curvature Flow}
559-
\put(78,-3) {\footnotesize Narrow-Range}
522+
[width=\linewidth]{figs/\DIFdelbeginFL \DIFdelFL{figure9}\DIFdelendFL \DIFaddbeginFL \DIFaddFL{figure10}\DIFaddendFL .png}
523+
\DIFdelbeginFL %DIFDELCMD < \put(6,-2) %%%
524+
\DIFdelendFL \DIFaddbeginFL \put(6,-3) \DIFaddendFL {\footnotesize Gaussian}
525+
\DIFdelbeginFL %DIFDELCMD < \put(25,-2) %%%
526+
\DIFdelendFL \DIFaddbeginFL \put(25.5,-3) \DIFaddendFL {\footnotesize Bilateral Gaussian}
527+
\DIFdelbeginFL %DIFDELCMD < \put(53,-2) %%%
528+
\DIFdelendFL \DIFaddbeginFL \put(54,-3) \DIFaddendFL {\footnotesize Curvature Flow}
529+
\DIFdelbeginFL %DIFDELCMD < \put(78,-2) %%%
530+
\DIFdelendFL \DIFaddbeginFL \put(78,-3) \DIFaddendFL {\footnotesize Narrow-Range}
560531
\end{overpic}
561-
\caption{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.}
562-
\label{fig:figure7}
563-
\end{figure}
532+
\caption{From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.%DIF < All methods use the same number of iterations ($iter = 2$) except the curvature flow-based method with a larger number ($iter = 80$).
533+
}
534+
\DIFdelbeginFL %DIFDELCMD < \label{fig:figure6}
535+
%DIFDELCMD < %%%
536+
\DIFdelendFL \DIFaddbeginFL \label{fig:figure7}
537+
\DIFaddendFL \end{figure}
564538

565539
\subsection{Combination with Popular Smoothing Filters}
566540
In this subsection, the anisotropic algorithm is combined with various popular smoothing filters to verify the effectiveness and practicability of the proposed scheme under actual application scenarios. The Gaussian filter, the bilateral Gaussian filter and the narrow-range filter use the same number of iterations ($iter=2$). The curvature flow filter uses more iterations ($iter=80$) to obtain flat surface results \DIFdelbegin \DIFdel{, }\DIFdelend at the cost of performance loss.

0 commit comments

Comments
 (0)