-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_bench_grid_sampler.py
136 lines (105 loc) · 4.19 KB
/
run_bench_grid_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pickle
from pathlib import Path
import unittest.mock
import torch
import torch.utils.benchmark as benchmark
from torch.nn.functional import grid_sample, affine_grid
import fire
def transform(img, grid, mode, align_corners):
output = grid_sample(img, grid, align_corners=align_corners, mode=mode)
return output
def patched_as_column_strings(self):
concrete_results = [r for r in self._results if r is not None]
env = f"({concrete_results[0].env})" if self._render_env else ""
env = env.ljust(self._env_str_len + 4)
output = [" " + env + concrete_results[0].as_row_name]
for m, col in zip(self._results, self._columns or ()):
if m is None:
output.append(col.num_to_str(None, 1, None))
else:
if len(m.times) == 1:
spread = 0
else:
spread = float(torch.tensor(m.times, dtype=torch.float64).std(unbiased=len(m.times) > 1))
if col._trim_significant_figures:
spread = benchmark.utils.common.trim_sigfig(spread, m.significant_figures)
output.append(f"{m.median / self._time_scale:>3.3f} (+-{spread / self._time_scale:>3.3f})")
return output
def run_benchmark(mode, align_corners, memory_format, dtype, device, tag="", min_run_time=10.0, n=2):
results = []
torch.manual_seed(12)
a = torch.deg2rad(torch.tensor(53.0))
ca, sa = torch.cos(a), torch.sin(a)
s1 = 1.23
s2 = 1.34
c, h, w = 3, 500, 400
theta = torch.tensor([[
[ca / s1, sa, 0.123],
[-sa, ca / s2, 0.234],
]])
theta = theta.expand(n, 2, 3).contiguous()
x = torch.arange(n * c * h * w, device=device).reshape(n, c, h, w).to(torch.uint8)
x = x.to(dtype=dtype)
x = x.contiguous(memory_format=memory_format)
theta = theta.to(device=device, dtype=dtype)
n, c, h, w = x.shape
grid = affine_grid(theta, size=(n, c, h, w), align_corners=align_corners)
results.append(
benchmark.Timer(
stmt=f"fn(x, grid, mode, align_corners)",
globals={
"fn": transform,
"x": x,
"grid": grid,
"mode": mode,
"align_corners": align_corners,
},
num_threads=torch.get_num_threads(),
label=f"Affine grid sampling, {device}",
sub_label=f"Input: {tuple(x.shape)} {x.dtype}, {memory_format}, align_corners={align_corners}, mode={mode}",
description=f"Eager ({torch.__version__}) {tag}",
).blocked_autorange(min_run_time=min_run_time)
)
return results
def main(
output_filepath: str,
min_run_time: float = 10.0,
tag: str = "",
display: bool = True,
num_threads: int = 1,
):
torch.set_num_threads(num_threads)
output_filepath = Path(output_filepath)
from datetime import datetime
now = datetime.now().strftime('%Y%m%d-%H%M%S')
print(f"Datetime: {now}")
print(f"Torch version: {torch.__version__}")
print(f"Torch config: {torch.__config__.show()}")
print(f"Num threads: {torch.get_num_threads()}")
print("")
test_results = []
for n in [1, 8]:
for device in ["cpu", ]:
for mode in ["nearest", "bilinear", "bicubic"]:
for align_corners in [True, False]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
for dtype in [torch.float32, torch.float64]:
test_results += run_benchmark(
mode, align_corners, memory_format, dtype, device, tag, min_run_time, n=n
)
with open(output_filepath, "wb") as handler:
output = {
"torch_version": torch.__version__,
"torch_config": torch.__config__.show(),
"num_threads": torch.get_num_threads(),
"test_results": test_results,
}
pickle.dump(output, handler)
if display:
with unittest.mock.patch(
"torch.utils.benchmark.utils.compare._Row.as_column_strings", patched_as_column_strings
):
compare = benchmark.Compare(test_results)
compare.print()
if __name__ == "__main__":
fire.Fire(main)