-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperf_results_compute_speedup.py
185 lines (152 loc) · 6.26 KB
/
perf_results_compute_speedup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pickle
from pathlib import Path
from typing import List, Optional
import unittest.mock
import torch
import torch.utils.benchmark as benchmark
from torch.utils.benchmark.utils import common
from torch.utils.benchmark.utils.compare import Table
import fire
def patched_as_column_strings(self):
concrete_results = [r for r in self._results if r is not None]
env = f"({concrete_results[0].env})" if self._render_env else ""
env = env.ljust(self._env_str_len + 4)
output = [" " + env + concrete_results[0].as_row_name]
for m, col in zip(self._results, self._columns or ()):
if m is None:
output.append(col.num_to_str(None, 1, None))
else:
if len(m.times) == 1:
spread = 0
else:
spread = float(torch.tensor(m.times, dtype=torch.float64).std(unbiased=len(m.times) > 1))
if col._trim_significant_figures:
spread = benchmark.utils.common.trim_sigfig(spread, m.significant_figures)
output.append(f"{m.median / self._time_scale:>3.3f} (+-{spread / self._time_scale:>3.3f})")
return output
class Value(common.Measurement): pass
class CustomizedTable(Table):
def __init__(self, results, colorize, trim_significant_figures, highlight_warnings):
assert len(set(r.label for r in results)) == 1
self.results = results
self._colorize = colorize
self._trim_significant_figures = trim_significant_figures
self._highlight_warnings = highlight_warnings
self.label = results[0].label
self.time_unit, self.time_scale = common.select_unit(
min(r.median for r in results if not isinstance(r, Value))
)
self.row_keys = common.ordered_unique([self.row_fn(i) for i in results])
self.row_keys.sort(key=lambda args: args[:2]) # preserve stmt order
self.column_keys = common.ordered_unique([self.col_fn(i) for i in results])
self.rows, self.columns = self.populate_rows_and_columns()
def get_new_table(compare, col1, col2, description, debug):
results = common.Measurement.merge(compare._results)
grouped_results = compare._group_by_label(results)
assert len(grouped_results.values()) == 1, grouped_results.values()
groups_iter = iter(grouped_results.values())
group = next(groups_iter)
if description is None:
description = f"Speed-up: {col1} vs {col2}"
# Add speed-up column into results:
updated_group = []
sub_label = None
v1 = None
v2 = None
r = None
_, scale = common.select_unit(min([r.median for r in group]))
for measurement in group:
if debug:
print("measurement.task_spec.description:", measurement.task_spec.description)
if measurement.task_spec.description == col1:
v1 = measurement.median
sub_label = measurement.task_spec.sub_label
if debug:
print("Matched col1:", col1, v1, sub_label)
measurement2 = None
for m2 in group:
d2 = m2.task_spec.description
sl2 = m2.task_spec.sub_label
if d2 == col2 and sl2 == sub_label:
v2 = m2.median
if debug:
print("Matched col2:", col2, v2)
measurement2 = m2
break
if measurement not in updated_group:
updated_group.append(measurement)
if v1 is not None and v2 is not None:
if measurement2 not in updated_group:
updated_group.append(measurement2)
r = v2 / v1 * scale
if debug:
print("ratio is: ", r)
v1 = None
v2 = None
sub_label = None
speedup_task = common.TaskSpec(
"",
setup="",
label=measurement.label,
sub_label=measurement.sub_label,
num_threads=measurement.num_threads,
env=measurement.env,
description=description
)
speedup_measurement = Value(1, [r, ], speedup_task)
r = None
updated_group.append(speedup_measurement)
assert len(updated_group) > len(group), "Seems like nothing was added. Run with --debug"
table = CustomizedTable(
updated_group,
compare._colorize,
compare._trim_significant_figures,
compare._highlight_warnings
)
return table
def main(
output_filepath: str,
perf_files: List[str],
*,
col1: str,
col2: str,
description: Optional[str] = None,
debug: bool = False
):
output_filepath = Path(output_filepath)
if output_filepath.exists():
raise FileExistsError(f"Output file '{output_filepath}' exists. Please provide a path to non-existing file")
if debug:
print("output_filepath:", output_filepath)
print("perf_files:", perf_files, type(perf_files))
print("col1:", col1, type(col1))
print("col2:", col2, type(col2))
print("description:", description, type(description))
ab_results = []
ab_configs = []
for perf_filepath in perf_files:
assert Path(perf_filepath).exists(), f"{perf_filepath} is not found"
with open(perf_filepath, "rb") as handler:
output = pickle.load(handler)
ab_configs.append(
f"Torch version: {output['torch_version']}\n"
f"Torch config: {output['torch_config']}\n"
)
ab_results.extend(output["test_results"])
assert len(ab_configs) == len(perf_files), (len(ab_configs), len(perf_files))
compare = benchmark.Compare(ab_results)
table = get_new_table(compare, col1=col1, col2=col2, description=description, debug=debug)
if debug:
print(table.render())
with output_filepath.open("w") as handler:
handler.write(f"Description:\n")
with unittest.mock.patch(
"torch.utils.benchmark.utils.compare._Row.as_column_strings", patched_as_column_strings
):
for in_filepath, config in zip(perf_files, ab_configs):
handler.write(f"- {Path(in_filepath).stem}\n")
handler.write(f"{config}\n")
handler.write(f"\n")
handler.write(table.render())
if __name__ == "__main__":
fire.Fire(main)