-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHandTrackingModule.py
101 lines (92 loc) · 3.65 KB
/
HandTrackingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import cv2
import mediapipe as mp
import time
import math
import numpy as np
class handdetector():
def __init__(self,mode=False,maxhands=2,detectconf=0.5,trackconf=0.5):
self.mode = mode
self.maxhands = maxhands
self.detectconf = detectconf
self.trackconf = trackconf
self.mphands = mp.solutions.hands
self.mpdraw = mp.solutions.drawing_utils
self.hands = self.mphands.Hands(self.mode,self.maxhands,self.detectconf)
self.tipIds = [4, 8, 12, 16, 20]
def findhands(self,img,draw=True):
imgRGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpdraw.draw_landmarks(img,handLms,self.mphands.HAND_CONNECTIONS)
return img
def findposition(self,img,handno = 0,draw =True):
xlist = []
ylist = []
bbox = []
self.lmlist = []
if self.results.multi_hand_landmarks:
myhand = self.results.multi_hand_landmarks[handno]
for id,lm in enumerate(myhand.landmark):
h,w,c = img.shape
cx,cy = int(lm.x*w),int(lm.y*h)
#print(id,cx,cy)
xlist.append(cx)
ylist.append(cy)
self.lmlist.append([id,cx,cy])
if draw:
cv2.circle(img, (cx, cy),5, (255, 0, 255), cv2.FILLED)
if len(self.lmlist) != 0:
xmin, xmax = min(xlist), max(xlist)
ymin, ymax = max(xlist), max(xlist)
bbox = xmin,ymin,xmax,ymax
if draw:
cv2.rectangle(img, (xmin - 20, ymin - 20), (xmax + 20, ymax + 20), (0, 255, 0), 2)
return self.lmlist,bbox
def fingersUp(self):
fingers = []
if len(self.lmlist) != 0:
# Thumb
if self.lmlist[self.tipIds[0]][1] > self.lmlist[self.tipIds[0] - 1][1]:
fingers.append(1)
else:
fingers.append(0)
# Fingers
for id in range(1, 5):
if self.lmlist[self.tipIds[id]][2] < self.lmlist[self.tipIds[id] - 2][2]:
fingers.append(1)
else:
fingers.append(0)
# totalFingers = fingers.count(1)
return fingers
def findDistance(self, p1, p2, img, draw=True, r=15, t=3):
x1, y1 = self.lmlist[p1][1:]
x2, y2 = self.lmlist[p2][1:]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
if draw:
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), t)
cv2.circle(img, (x1, y1), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), r, (0, 0, 255), cv2.FILLED)
length = math.hypot(x2 - x1, y2 - y1)
return length, img, [x1, y1, x2, y2, cx, cy]
def main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handdetector()
while True:
success, img = cap.read()
img = detector.findhands(img)
lmlist, bbox = detector.findposition(img)
if len(lmlist) != 0 :
print(lmlist[4])
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
#cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()