-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnode.py
577 lines (482 loc) · 21.5 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
from typing import Optional, Union, List
from urllib.request import urlopen
import comfy.diffusers_convert
import comfy.samplers
import comfy.sd
import comfy.utils
import comfy.clip_vision
import comfy.model_management
import numpy as np
import os
import subprocess
import sys
import torch
import torch
import os
import sys
import json
import hashlib
import traceback
import math
import time
import random
import logging
import uuid
import folder_paths
import nodes
# from ..ComfyUI_IPAdapter_plus import IPAdapterPlus
from PIL import Image, ImageOps, ImageSequence, ImageFile,UnidentifiedImageError
from PIL.PngImagePlugin import PngInfo
import numpy as np
import safetensors.torch
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.diffusers_load
import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
import comfy.controlnet
import comfy.clip_vision
import comfy.model_management
from comfy.cli_args import args
import importlib
import folder_paths
import latent_preview
import node_helpers
from .libs.utils import TaggedCache, any_typ
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
settings_file = os.path.join(root_dir, 'cache_settings.json')
try:
with open(settings_file) as f:
cache_settings = json.load(f)
except Exception as e:
print(e)
cache_settings = {}
cache = TaggedCache(cache_settings)
cache_count = {}
def update_cache(k, tag, v):
cache[k] = (tag, v)
cnt = cache_count.get(k)
if cnt is None:
cnt = 0
cache_count[k] = cnt
else:
cache_count[k] += 1
def cache_weak_hash(k):
cnt = cache_count.get(k)
if cnt is None:
cnt = 0
return k, cnt
# 获取当前文件的目录
current_dir = os.path.dirname(os.path.abspath(__file__))
# 获取项目根目录的绝对路径
project_root = os.path.abspath(os.path.join(current_dir, '..'))
# 将项目根目录添加到 sys.path
if project_root not in sys.path:
sys.path.append(project_root)
# 导入 IPAdapterPlus 模块
from custom_nodes.ComfyUI_IPAdapter_plus import IPAdapterPlus
class cstr(str):
class color:
END = '\33[0m'
BOLD = '\33[1m'
ITALIC = '\33[3m'
UNDERLINE = '\33[4m'
BLINK = '\33[5m'
BLINK2 = '\33[6m'
SELECTED = '\33[7m'
BLACK = '\33[30m'
RED = '\33[31m'
GREEN = '\33[32m'
YELLOW = '\33[33m'
BLUE = '\33[34m'
VIOLET = '\33[35m'
BEIGE = '\33[36m'
WHITE = '\33[37m'
BLACKBG = '\33[40m'
REDBG = '\33[41m'
GREENBG = '\33[42m'
YELLOWBG = '\33[43m'
BLUEBG = '\33[44m'
VIOLETBG = '\33[45m'
BEIGEBG = '\33[46m'
WHITEBG = '\33[47m'
GREY = '\33[90m'
LIGHTRED = '\33[91m'
LIGHTGREEN = '\33[92m'
LIGHTYELLOW = '\33[93m'
LIGHTBLUE = '\33[94m'
LIGHTVIOLET = '\33[95m'
LIGHTBEIGE = '\33[96m'
LIGHTWHITE = '\33[97m'
GREYBG = '\33[100m'
LIGHTREDBG = '\33[101m'
LIGHTGREENBG = '\33[102m'
LIGHTYELLOWBG = '\33[103m'
LIGHTBLUEBG = '\33[104m'
LIGHTVIOLETBG = '\33[105m'
LIGHTBEIGEBG = '\33[106m'
LIGHTWHITEBG = '\33[107m'
@staticmethod
def add_code(name, code):
if not hasattr(cstr.color, name.upper()):
setattr(cstr.color, name.upper(), code)
else:
raise ValueError(f"'cstr' object already contains a code with the name '{name}'.")
def __new__(cls, text):
return super().__new__(cls, text)
def __getattr__(self, attr):
if attr.lower().startswith("_cstr"):
code = getattr(self.color, attr.upper().lstrip("_cstr"))
modified_text = self.replace(f"__{attr[1:]}__", f"{code}")
return cstr(modified_text)
elif attr.upper() in dir(self.color):
code = getattr(self.color, attr.upper())
modified_text = f"{code}{self}{self.color.END}"
return cstr(modified_text)
elif attr.lower() in dir(cstr):
return getattr(cstr, attr.lower())
else:
raise AttributeError(f"'cstr' object has no attribute '{attr}'")
def print(self, **kwargs):
print(self, **kwargs)
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
# Freeze PIP modules
def packages(versions=False):
import sys
import subprocess
return [( r.decode().split('==')[0] if not versions else r.decode() ) for r in subprocess.check_output([sys.executable, '-s', '-m', 'pip', 'freeze']).split()]
def install_package(package, uninstall_first: Union[List[str], str] = None):
if os.getenv("WAS_BLOCK_AUTO_INSTALL", 'False').lower() in ('true', '1', 't'):
cstr(f"Preventing package install of '{package}' due to WAS_BLOCK_INSTALL env").msg.print()
else:
if uninstall_first is None:
return
if isinstance(uninstall_first, str):
uninstall_first = [uninstall_first]
cstr(f"Uninstalling {', '.join(uninstall_first)}..")
subprocess.check_call([sys.executable, '-s', '-m', 'pip', 'uninstall', *uninstall_first])
cstr("Installing package...").msg.print()
subprocess.check_call([sys.executable, '-s', '-m', 'pip', '-q', 'install', package])
class Image_Blending_Mode_Mask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_a": ("IMAGE",),
"image_b": ("IMAGE",),
"mode": ([
"add",
"color",
"color_burn",
"color_dodge",
"darken",
"difference",
"exclusion",
"hard_light",
"hue",
"lighten",
"multiply",
"overlay",
"screen",
"soft_light"
],),
"blend_percentage": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask": ("MASK",), # 添加遮罩输入
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "image_blending_mode_mask"
CATEGORY = "WWL"
def image_blending_mode_mask(self, image_a, image_b, mode='add', blend_percentage=1.0, mask=None):
# Install Pilgram
if 'pilgram' not in packages():
install_package("pilgram")
# Import Pilgram module
import pilgram
# Convert images to PIL
img_a = tensor2pil(image_a)
img_b = tensor2pil(image_b)
# Ensure images are the same size
if img_a.size != img_b.size:
raise ValueError("Input images must have the same dimensions")
# Apply blending mode
blending_modes = {
"color": pilgram.css.blending.color,
"color_burn": pilgram.css.blending.color_burn,
"color_dodge": pilgram.css.blending.color_dodge,
"darken": pilgram.css.blending.darken,
"difference": pilgram.css.blending.difference,
"exclusion": pilgram.css.blending.exclusion,
"hard_light": pilgram.css.blending.hard_light,
"hue": pilgram.css.blending.hue,
"lighten": pilgram.css.blending.lighten,
"multiply": pilgram.css.blending.multiply,
"add": pilgram.css.blending.normal,
"overlay": pilgram.css.blending.overlay,
"screen": pilgram.css.blending.screen,
"soft_light": pilgram.css.blending.soft_light
}
out_image = blending_modes.get(mode, pilgram.css.blending.normal)(img_a, img_b)
out_image = out_image.convert("RGB")
# Apply mask if provided
if mask is not None:
mask = ImageOps.invert(tensor2pil(mask).convert('L'))
out_image = Image.composite(img_a, out_image, mask.resize(img_a.size))
# Blend image based on blend percentage
blend_mask = Image.new(mode="L", size=img_a.size, color=(round(blend_percentage * 255)))
blend_mask = ImageOps.invert(blend_mask)
out_image = Image.composite(img_a, out_image, blend_mask)
return (pil2tensor(out_image), )
class LoadImage_Bool:
DEFAULT_IMAGE_NAME = "custom_nodes_empty.jpg"
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
if not files:
default_image_path = os.path.join(input_dir, LoadImage_Bool.DEFAULT_IMAGE_NAME)
LoadImage_Bool._generate_default_image(default_image_path)
files = [LoadImage_Bool.DEFAULT_IMAGE_NAME]
return {"required": {"image": (sorted(files), {"image_upload": True})}}
CATEGORY = "image"
RETURN_TYPES = ("IMAGE", "MASK", "BOOLEAN")
FUNCTION = "load_image"
CATEGORY = "WWL"
def load_image(self, image=DEFAULT_IMAGE_NAME):
if not image or image == LoadImage_Bool.DEFAULT_IMAGE_NAME:
return self._default_response()
try:
image_path = folder_paths.get_annotated_filepath(image)
img = node_helpers.pillow(Image.open, image_path)
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask, True)
except Exception as e:
return self._default_response()
def _default_response(self):
black_image = torch.zeros((1, 64, 64, 3), dtype=torch.float32, device="cpu")
black_mask = torch.zeros((1, 64, 64), dtype=torch.float32, device="cpu")
return (black_image, black_mask, False)
@classmethod
def IS_CHANGED(s, image=DEFAULT_IMAGE_NAME):
if not image or image == LoadImage_Bool.DEFAULT_IMAGE_NAME:
return False
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image=DEFAULT_IMAGE_NAME):
if not image or image == LoadImage_Bool.DEFAULT_IMAGE_NAME:
return True
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
@staticmethod
def _generate_default_image(filepath):
# Create a default black image (64x64)
black_image = Image.new("RGB", (1, 1), (0, 0, 0))
black_image.save(filepath)
class IPAdapter_Mad_Scientist_weight_type:
CATEGORY_KEYS = ['0layer', '1layer', '2layer', '3layer', '4layer', '5layer', '6layer', '7layer', '8layer', '9layer', '10layer', '11layer']
OPTIONS = {str(i): str(i) for i in range(0, 12)}
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
**cls.get_input_types_from_keys(cls.CATEGORY_KEYS),
"Random": (["Yes", "No"], {"default": "No"}),
"seed": ("INT", {"default": 0, "min": -1125899906842624, "max": 1125899906842624}),
}
}
@staticmethod
def get_input_types_from_keys(keys):
input_types = {}
for i, key in enumerate(keys):
# Hide the super key by not including it in the input_types dictionary
input_types[f"{key} Weight"] = ("FLOAT", {"default": 0.0, "min": -2.0, "max": 2.0, "step": 0.1})
return input_types
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("layer_weights",)
FUNCTION = "generate_prompt"
CATEGORY = "WWL"
def generate_prompt(self, **kwargs):
prompt_parts = {str(i): 0.0 for i in range(0, 12)}
for i, key in enumerate(self.CATEGORY_KEYS):
# Since the super key is hidden, we use the index to find the corresponding weight
weight_key = f"{key} Weight"
if weight_key in kwargs and kwargs[weight_key] is not None:
weight = kwargs[weight_key]
prompt_parts[str(i)] = weight
if kwargs.get("Random") == "Yes":
for key in self.CATEGORY_KEYS:
options = list(self.OPTIONS.keys())
random_choice = random.choice(options)
weight_key = f"{key} Weight"
if prompt_parts[str(int(random_choice))] == 0.0:
weight = random.uniform(-2.0, 2.0)
prompt_parts[random_choice] = weight
layer_weights = ','.join(f"{k}:{int(v)}" if v in {-2.0, -1.0, 0.0, 1.0, 2.0} else f"{k}:{v:.1f}" for k, v in prompt_parts.items())
return (layer_weights,)
WEIGHT_TYPES = ["linear", "ease in", "ease out", 'ease in-out', 'reverse in-out', 'weak input', 'weak output', 'weak middle', 'strong middle', 'style transfer', 'composition', 'strong style transfer', 'style and composition', 'style transfer precise', 'composition precise']
class IPAdapter_FaceID_Bool():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/faceid"
RETURN_TYPES = ("MODEL","IMAGE","BOOLEAN")
RETURN_NAMES = ("MODEL", "face_image", "bool",)
FUNCTION = "apply_ipadapter_bool"
CATEGORY = "WWL"
def apply_ipadapter_bool(self, model, ipadapter, start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, expand_style=False, weight_type="linear", combine_embeds="concat", weight_faceidv2=None, image=None, image_style=None, image_composition=None, image_negative=None, clip_vision=None, attn_mask=None, insightface=None, embeds_scaling='V only', layer_weights=None, ipadapter_params=None, encode_batch_size=0, style_boost=None, composition_boost=None, enhance_tiles=1, enhance_ratio=1.0):
try:
# 实例化 IPAdapterFaceID 类
ip_adapter_face_id = IPAdapterPlus.IPAdapterFaceID()
# 调用 apply_ipadapter 方法
work_model, face_image = ip_adapter_face_id.apply_ipadapter(model, ipadapter, start_at, end_at, weight, weight_style, weight_composition, expand_style, weight_type, combine_embeds, weight_faceidv2, image, image_style, image_composition, image_negative, clip_vision, attn_mask, insightface, embeds_scaling, layer_weights, ipadapter_params, encode_batch_size, style_boost, composition_boost, enhance_tiles, enhance_ratio)
return (work_model, face_image, True)
except Exception as e:
print(f"Error: {e}")
return (model, image, False)
class LoraLoaderShared(nodes.LoraLoader):
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
file_list = folder_paths.get_filename_list("loras")
file_list.insert(0, "None")
return {
"required": {
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
"lora_name": (file_list, {"tooltip": "The name of the LoRA."}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the CLIP model. This value can be negative."}),
"key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'lora_name' as the key."}),
},
"optional": {
"mode": (['Auto', 'Override Cache', 'Read Only'],),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "STRING")
RETURN_NAMES = ("model", "clip", "cache key")
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
def doit(self, model, clip, lora_name, strength_model, strength_clip, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoraLoaderShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = lora_name
else:
key = key_opt.strip()
if strength_model == 0 and strength_clip == 0:
return (model, clip, key)
if lora_name == "None":
return (model, clip, key)
if key not in cache or mode == 'Override Cache':
res = self.load_lora(model, clip, lora_name, strength_model, strength_clip)
update_cache(key, "lora", (False, res))
cache_kind = 'lora'
print(f"[Inspire Pack] LoraLoaderShared: Lora '{lora_name}' is cached to '{key}'.")
else:
cache_kind, (_, res) = cache[key]
print(f"[Inspire Pack] LoraLoaderShared: Cached lora '{key}' is loaded. (Loading skip)")
if cache_kind == 'lora':
model, clip = res
else:
raise Exception(f"[LoraLoaderShared] Unexpected cache_kind '{cache_kind}'")
return model, clip, key
@staticmethod
def IS_CHANGED(model, clip, lora_name, strength_model, strength_clip, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoraLoaderShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = lora_name
else:
key = key_opt.strip()
if mode == 'Read Only':
return (None, cache_weak_hash(key))
elif mode == 'Override Cache':
return (lora_name, key)
return (None, cache_weak_hash(key))
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)