|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from typing import Dict, List, Literal, Optional, Tuple\n", |
| 10 | + "\n", |
| 11 | + "import instructor\n", |
| 12 | + "import openai\n", |
| 13 | + "import pandas as pd\n", |
| 14 | + "import weave\n", |
| 15 | + "from pydantic import BaseModel, Field\n", |
| 16 | + "from set_env import set_env\n", |
| 17 | + "import json\n", |
| 18 | + "import asyncio" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "set_env(\"OPENAI_API_KEY\")\n", |
| 28 | + "set_env(\"WANDB_API_KEY\")\n", |
| 29 | + "set_env(\"AZURE_OPENAI_ENDPOINT\")\n", |
| 30 | + "set_env(\"AZURE_OPENAI_API_KEY\")\n", |
| 31 | + "print(\"Env set\")" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 3, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "from utils.config import ENTITY, WEAVE_PROJECT" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": null, |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "weave.init(f\"{ENTITY}/{WEAVE_PROJECT}\")" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 5, |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "N_SAMPLES = 67" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 6, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "client = openai.OpenAI()" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 7, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "def load_medical_data(url: str, num_samples: int = N_SAMPLES) -> Tuple[pd.DataFrame, pd.DataFrame]:\n", |
| 77 | + " \"\"\"\n", |
| 78 | + " Load medical data and split into train and test sets\n", |
| 79 | + " \n", |
| 80 | + " Args:\n", |
| 81 | + " url: URL of the CSV file\n", |
| 82 | + " num_samples: Number of samples to load\n", |
| 83 | + " \n", |
| 84 | + " Returns:\n", |
| 85 | + " Tuple of (train_df, test_df)\n", |
| 86 | + " \"\"\"\n", |
| 87 | + " df = pd.read_csv(url)\n", |
| 88 | + " df = df.sample(n=num_samples, random_state=42) # Sample and shuffle data\n", |
| 89 | + " \n", |
| 90 | + " # Split into 80% train, 20% test\n", |
| 91 | + " train_size = int(0.8 * len(df))\n", |
| 92 | + " train_df = df[:train_size]\n", |
| 93 | + " test_df = df[train_size:]\n", |
| 94 | + " \n", |
| 95 | + " return train_df, test_df" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 8, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "medical_dataset_url = \"https://raw.githubusercontent.com/wyim/aci-bench/main/data/challenge_data/train.csv\"" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 9, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "train_df, test_df = load_medical_data(medical_dataset_url)\n", |
| 114 | + "train_samples = train_df.to_dict(\"records\")\n", |
| 115 | + "test_samples = test_df.to_dict(\"records\")" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "train_samples[0]" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "metadata": {}, |
| 131 | + "outputs": [], |
| 132 | + "source": [ |
| 133 | + "test_samples[0]" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 12, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "def convert_to_jsonl(df: pd.DataFrame, output_file: str = \"medical_conversations.jsonl\"):\n", |
| 143 | + " \"\"\"\n", |
| 144 | + " Convert medical dataset to JSONL format with conversation structure\n", |
| 145 | + " \n", |
| 146 | + " Args:\n", |
| 147 | + " df: DataFrame to convert\n", |
| 148 | + " output_file: Output JSONL filename\n", |
| 149 | + " \"\"\"\n", |
| 150 | + " \n", |
| 151 | + " with open(output_file, 'w', encoding='utf-8') as f:\n", |
| 152 | + " for _, row in df.iterrows():\n", |
| 153 | + " # Create the conversation structure\n", |
| 154 | + " conversation = {\n", |
| 155 | + " \"messages\": [\n", |
| 156 | + " {\n", |
| 157 | + " \"role\": \"system\",\n", |
| 158 | + " \"content\": \"You are a medical scribe assistant. Your task is to accurately document medical conversations between doctors and patients, creating detailed medical notes that capture all relevant clinical information.\"\n", |
| 159 | + " },\n", |
| 160 | + " {\n", |
| 161 | + " \"role\": \"user\",\n", |
| 162 | + " \"content\": row['dialogue']\n", |
| 163 | + " },\n", |
| 164 | + " {\n", |
| 165 | + " \"role\": \"assistant\",\n", |
| 166 | + " \"content\": row['note']\n", |
| 167 | + " }\n", |
| 168 | + " ]\n", |
| 169 | + " }\n", |
| 170 | + " \n", |
| 171 | + " # Write as JSON line\n", |
| 172 | + " json_line = json.dumps(conversation, ensure_ascii=False)\n", |
| 173 | + " f.write(json_line + '\\n')\n", |
| 174 | + " \n", |
| 175 | + " print(f\"Converted {len(df)} records to {output_file}\")" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "convert_to_jsonl(train_df, \"medical_conversations_train.jsonl\")\n", |
| 185 | + "convert_to_jsonl(test_df, \"medical_conversations_test.jsonl\")" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": 14, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "from utils.prompts import medical_task, medical_system_prompt" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 15, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "def format_dialogue(dialogue: str):\n", |
| 204 | + " dialogue = dialogue.replace(\"\\n\", \" \")\n", |
| 205 | + " transcript = f\"Dialogue: {dialogue}\"\n", |
| 206 | + " return transcript\n", |
| 207 | + "\n", |
| 208 | + "\n", |
| 209 | + "@weave.op()\n", |
| 210 | + "def process_medical_record(dialogue: str) -> Dict:\n", |
| 211 | + " transcript = format_dialogue(dialogue)\n", |
| 212 | + " prompt = medical_task.format(transcript=transcript)\n", |
| 213 | + "\n", |
| 214 | + " response = client.chat.completions.create(\n", |
| 215 | + " model=\"gpt-3.5-turbo\",\n", |
| 216 | + " messages=[\n", |
| 217 | + " {\"role\": \"system\", \"content\": medical_system_prompt},\n", |
| 218 | + " {\"role\": \"user\", \"content\": prompt},\n", |
| 219 | + " ],\n", |
| 220 | + " )\n", |
| 221 | + "\n", |
| 222 | + " extracted_info = response.choices[0].message.content\n", |
| 223 | + "\n", |
| 224 | + " return {\n", |
| 225 | + " \"input\": transcript,\n", |
| 226 | + " \"output\": extracted_info,\n", |
| 227 | + " }" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": 16, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "# Define the LLM scoring function\n", |
| 237 | + "@weave.op()\n", |
| 238 | + "async def medical_note_accuracy(note: str, output: dict) -> dict:\n", |
| 239 | + " scoring_prompt = \"\"\"Compare the generated medical note with the ground truth note and evaluate accuracy.\n", |
| 240 | + " Score as 1 if the generated note captures the key medical information accurately, 0 if not.\n", |
| 241 | + " Output in valid JSON format with just a \"score\" field.\n", |
| 242 | + " \n", |
| 243 | + " Ground Truth Note:\n", |
| 244 | + " {ground_truth}\n", |
| 245 | + " \n", |
| 246 | + " Generated Note:\n", |
| 247 | + " {generated}\"\"\"\n", |
| 248 | + " \n", |
| 249 | + " prompt = scoring_prompt.format(\n", |
| 250 | + " ground_truth=note,\n", |
| 251 | + " generated=output['output']\n", |
| 252 | + " )\n", |
| 253 | + " \n", |
| 254 | + " response = client.chat.completions.create(\n", |
| 255 | + " model=\"gpt-4o\",\n", |
| 256 | + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", |
| 257 | + " response_format={ \"type\": \"json_object\" }\n", |
| 258 | + " )\n", |
| 259 | + " return json.loads(response.choices[0].message.content)" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": 17, |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [], |
| 267 | + "source": [ |
| 268 | + "# Create evaluation for test samples\n", |
| 269 | + "test_evaluation = weave.Evaluation(\n", |
| 270 | + " name='medical_record_extraction_test',\n", |
| 271 | + " dataset=test_samples,\n", |
| 272 | + " scorers=[medical_note_accuracy]\n", |
| 273 | + ")\n" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": 18, |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [], |
| 281 | + "source": [ |
| 282 | + "try:\n", |
| 283 | + " in_jupyter = True\n", |
| 284 | + "except ImportError:\n", |
| 285 | + " in_jupyter = False\n", |
| 286 | + "if in_jupyter:\n", |
| 287 | + " import nest_asyncio\n", |
| 288 | + "\n", |
| 289 | + " nest_asyncio.apply()" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "code", |
| 294 | + "execution_count": null, |
| 295 | + "metadata": {}, |
| 296 | + "outputs": [], |
| 297 | + "source": [ |
| 298 | + "test_results = asyncio.run(test_evaluation.evaluate(process_medical_record))\n", |
| 299 | + "print(f\"Completed test evaluation\")" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "code", |
| 304 | + "execution_count": 20, |
| 305 | + "metadata": {}, |
| 306 | + "outputs": [], |
| 307 | + "source": [ |
| 308 | + "import os\n", |
| 309 | + "from openai import AzureOpenAI\n", |
| 310 | + "\n", |
| 311 | + "# Initialize Azure client\n", |
| 312 | + "azure_client = AzureOpenAI(\n", |
| 313 | + " azure_endpoint = os.getenv(\"AZURE_OPENAI_ENDPOINT\"), \n", |
| 314 | + " api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"), \n", |
| 315 | + " api_version=\"2024-02-01\"\n", |
| 316 | + ")\n", |
| 317 | + "\n", |
| 318 | + "@weave.op()\n", |
| 319 | + "def process_medical_record_azure(dialogue: str) -> Dict:\n", |
| 320 | + "\n", |
| 321 | + " response = azure_client.chat.completions.create(\n", |
| 322 | + " model=\"gpt-35-turbo-0125-ft-d30b3aee14864c29acd9ac54eb92457f\",\n", |
| 323 | + " messages=[\n", |
| 324 | + " {\"role\": \"system\", \"content\": \"You are a medical scribe assistant. Your task is to accurately document medical conversations between doctors and patients, creating detailed medical notes that capture all relevant clinical information.\"},\n", |
| 325 | + " {\"role\": \"user\", \"content\": dialogue},\n", |
| 326 | + " ],\n", |
| 327 | + " )\n", |
| 328 | + "\n", |
| 329 | + " extracted_info = response.choices[0].message.content\n", |
| 330 | + "\n", |
| 331 | + " return {\n", |
| 332 | + " \"input\": dialogue,\n", |
| 333 | + " \"output\": extracted_info,\n", |
| 334 | + " }" |
| 335 | + ] |
| 336 | + }, |
| 337 | + { |
| 338 | + "cell_type": "code", |
| 339 | + "execution_count": 21, |
| 340 | + "metadata": {}, |
| 341 | + "outputs": [], |
| 342 | + "source": [ |
| 343 | + "test_results_azure = asyncio.run(test_evaluation.evaluate(process_medical_record_azure))\n", |
| 344 | + "print(f\"Completed test evaluation\")" |
| 345 | + ] |
| 346 | + }, |
| 347 | + { |
| 348 | + "cell_type": "code", |
| 349 | + "execution_count": null, |
| 350 | + "metadata": {}, |
| 351 | + "outputs": [], |
| 352 | + "source": [] |
| 353 | + } |
| 354 | + ], |
| 355 | + "metadata": { |
| 356 | + "kernelspec": { |
| 357 | + "display_name": ".venv", |
| 358 | + "language": "python", |
| 359 | + "name": "python3" |
| 360 | + }, |
| 361 | + "language_info": { |
| 362 | + "codemirror_mode": { |
| 363 | + "name": "ipython", |
| 364 | + "version": 3 |
| 365 | + }, |
| 366 | + "file_extension": ".py", |
| 367 | + "mimetype": "text/x-python", |
| 368 | + "name": "python", |
| 369 | + "nbconvert_exporter": "python", |
| 370 | + "pygments_lexer": "ipython3", |
| 371 | + "version": "3.11.9" |
| 372 | + } |
| 373 | + }, |
| 374 | + "nbformat": 4, |
| 375 | + "nbformat_minor": 2 |
| 376 | +} |
0 commit comments